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Abstract

We propose an original approach dedicated to QSAR
modeling and clustering analysis based on a dataset of 23
Benzothiazole derivatives as cytotoxic inhibitors. The choice
of relevant molecular descriptors is a key step in QSAR mod-
eling. In this work, model selection by exhaustive search
is used to identify the best subset of molecular descrip-
tors. Three distinct clusters have been identified using K-
means clustering. Each cluster, groups a homogeneous class
of molecules with respect their molecular descriptors. Sil-
houette analysis, used as cluster validation approach, proves
that the molecules are very well clustered and there are no
molecules placed in the wrong cluster. Moreover, the re-
sults emphasize that the molecular descriptors belonging to
physico-chemical class appears to largely influence the cyto-
toxic activity of Benzothiazole derivatives. From this classi-
fication, all molecules with the trifluoromethyl group show a
strong activity. The best cytotoxic activity was exhibited by
compound containing two trifluoromethyl groups in ortho po-
sition. We suggested that this functional group is correlated to
binding affinity. The PLS equations exhibit a good agreement
between fitted and observed cytotoxic activities. According to
the goodness of fit statistics, 67% and 80% of the variability
in cytotoxic activity around its mean are explained. The F-
statistic test revealed the significance of both PLS regression
equations. The values of bootstrapping correlation coefficient
R and leave-one-out cross-validation coefficient 07, re-

boots
vealing that the resulting models have good predictive

power and robustness. We concluded that the developed PLS
equations can be successfully applied to predict the antipro-
liferative activity against breast cancer cells lines of Benzoth-
iazole derivatives.

Keywords:Benzothiazole derivatives, anticancer activity, princi-
pal component analysis, K-means clustering, PLS regression.

1 Introduction

After cardiovascular diseases, cancer is the second leading
cause of death worldwide. There is a growing body of litera-
ture that recognises the importance of cancer prevention from
threatening our lives. It is now well established from a variety
of studies, that protein tyrosine kinases play a critical role in
the development and progression of many kinds of cancer [1].
There are a lot of heterocyclic compounds which have pro-
vide enormous potential in the discovery of new chemothera-
peutics in drug discovery and development programs, [2, 4]
such as benzothiazole type compounds belong to the fam-
ily of heterocyclic compounds having benzene ring incorpo-
rated with five-membered ring containing nitrogen and sul-
fur atoms. Because of their biological and pharmacological
properties, benzothiazoles were widely used as antitubercular
[5, 7], antimicrobial [8, 1 1], antimalarial, [12, 13] anticonvul-
sant, [ 14, 16] anthelmintic [17, 19] analgesic, [20] antinflam-
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matory [21, 22] and antidiabetic [23]. More importantly, ben-
zothiazoles are one of the most widely used groups of organic
compounds and have been extensively used for anticancer ac-
tivity [24, 29]. Many benzothiazoles were synthesised for this
purpose and their responses against cancer cells were varied.
However, there is an urgent need to synthesise new benzothia-
zoles with higher responses. The classic method of synthesis
and assess the new compounds is too expensive but this is-
sue has been addressed by the quantitative structure-activity
relationships theory (QSAR) [30, 31]. QSAR has emerged
as a powerful platform for predicting the biological activity
for new compounds. It simply provides formalism for de-
veloping mathematical correlation between the structural fea-
tures and property/activity similar compounds. QSAR anal-
ysis will provide structural insight into the mechanism of ac-
tion of these inhibitors, which is of utmost importance in the
design of new analogues by modification of structure of par-
ent compound [4, 32, 33]. In this work, we aim to make
reliable QSAR models to predict the antiproliferative activ-
ity (anticancer activity) based on a dataset of 23 compounds.
Through a Principal Component Analysis (PCA), K-means
clustering, silhouette analysis as cluster validation approach,
cluster characterization by molecular descriptors and Partial
Least Square (PLS) regression methods. The development of
a performant model will help to explain the role of Benzoth-
iazole derivatives in chemotherapy against breast cancer and
also propose other molecules.

2 Materials and methods

2.1 Biological data set and molecular
optimization

The cytotoxic activities of Benzothiazole derivatives were
evaluated in the human cancer cell lines SK-BR3 [34].
The growth inhibition (ICsp) was converted in pICsy by
taking logarithm (pICsp = - Log(ICsp)) which was taken
as the dependent parameter for QSAR study. The ICs,
is measure of a compound’s inhibitory effectiveness and
which cause 50 % reduction in of cell growth for human
breast cancer. The chemical structures of Benzothiazoles
inhibitors and their corresponding pICso values tested at
concentrations of 100uM are presented in Tab.(1). All
computational calculations were carried out on a Station (HP
Intel® Xeon® Processor CPU E5-2600 , 8 GB RAM) using
three software. The 3D structures of the inhibitors were
subjected to energy minimization using MM+ force field
followed by Semi-empirical self-consistent-field molecular
orbital (SCF-MO) method at PM3 level within restricted
Hartree-Fock formalism (RHF), with a gradient norm limit
of 0.1 kcal/A° in HyperChem program package version 8.08

[35].

Further, the 3D structures were fully reoptimized by
Gaussian 09 software [36] at DFT/B3LYP exchange corre-
lation potential with 6-311G(d,p) basis. In the next step,
a parallel study using the molecular mechanics force field
(MMFF) method implemented in the Molecular Operating
Environment (MOE2014.09, Chemical Computing Group,
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Inc.) package [37] with a convergence criterion of 0.01
kcal/mol and partial atomic charges.

Table 1: The structure and cytotoxic activity of Benzothiazole

derivatives
9 0
NN | © S>_NZ‘
H Na N/

[ Compounds no. | Ar [ pICsp |
1 4-Cl-3-CF3-CgH3- 4.063
2 3,5-(CF3),-CeHs3- 4.095
3 2,4-Cly-CgH3- 4.092
4 3,5-Cl,-CeH3- 4.074
5 4-Cl-CgHy- 4.081
6 6-Cl-pyridin-2-yl 4.049
7 Quinolin-6-yl 4.529
8 Benzofuran-2-yl 4.280
9 1,4-Benzodioxan-6-yl 4.205
10 4-C1-3-CF3-C¢H3-NH 4.025
11 3,5-(CF3),-CcH3-NH 4.016
12 2,4-Cl,-C¢H3-NH 4.038
13 3,4-Cl,-C¢H3-NH 4.033
14 4-C1-C¢Hy4-NH 4.111
15 4-CF3-CqH4-NH 4.100
16 4-F-CcH4-NH 4.137
17 4-Br-CqH4-NH 4.160
18 2-Cl1-5-CF3-CgH3z-NH 4.050
19 2,4-F2-CgH3-NH 4.099
20 4-Morpholine-C¢H4-NH 4.110
21 4-(4-CH3-pip-1-y1)-C¢Hy-NH 4.064
22 4-(4-(CH3),N-pi-1-y1)-CHs-NH | 4.038

[ 23 (REF) [ Sorafenib [ 4031 |

pip: piperazine and pi: piperidin

2.2 Molecular descriptor generation

A QSAR study was performed on 23 Benzothiazole deriva-
tives as reported previously, in order to identify a quantitative
relationship between the structure and antiproliferative activ-
ity against breast cancer cells lines. Before every modeliza-
tion, it is necessary to establish different types of molecular
descriptors [38] (one dimensional, two dimensional, and three
dimensional) to obtain a meaningful QSAR model. A set
of 42 molecular descriptors were calculated using three soft-
ware as Hyperchem program package version 8.08, Gaussian
09 software and MOE 2014.09 based on molecular structures
and the quantum theory of atoms in molecules.

2.3 Statistical methods

The statistical study of the quantitative structure-activity re-
lationship was conducted using several statistical methods.
The main objective is understanding the quantitative correla-
tion of the physicochemical properties of some Benzothiazole
derivatives with their biological activities. A brief descrip-
tion of this methods is discussed in the next sections. More-
over, all the statistical tools presented in this study were im-
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plemented under R (R Foundation for Statistical Computing)
software.

2.3.1 Molecular descriptor selection

The choice of relevant molecular descriptors is a key step in
QSAR modeling. An initial selection of p descriptors was
conducted as follows. The Pearson’s correlation coefficient
is calculated between each descriptor x; and the studied bi-
ological response. Using a correlation significance test, the
p.values are calculated for testing the null hypothesis against
the alternative that there is a nonzero correlation. The p.values
are then sorted in ascending order and the first p (equal to 12)
molecular descriptors are selected. As we can see the num-
ber of preselected descriptors is large and it is difficult to find
the best model in terms of predictive power. In this case, it
is more efficient to use a search algorithm (e.g. Backward
elimination, Forward selection, Stepwise regression and Ex-
haustive method) to reach this goal. In this study, the leaps R
package [39], model selection by exhaustive search, is used
to identify the best subset of descriptors. The principle of this
method is based on the computing of 27 regressions with all
possible combinations of x; = x1,...,x,. The best combina-
tion will be the one with the highest adjusted correlation co-
efficient or the lowest value of another criterion such as Mal-
low’s Cp statistic or Schwartz’s information criterion (BIC)

[40].

2.3.2 Principal component analysis method

PCA method, reduces the number of dimensions without
much loss on information. The problem of visualizing data
with high dimension can be simplified by replacing several
correlated variables with a single new variable. PCA is a pow-
erful tool for achieving this simplification. The method gener-
ates a new set of variables, called principal components. Each
principal component is a linear combination of the original
variables. The first principal component explain the largest
part of the inertia of the data table. Each succeeding com-
ponent will account for progressively smaller amounts of in-
ertia [41]. In this paper, PCA is performed as a preprocess-
ing to provide more stable clusters. We mainly used the Fac-
toMineR R package [42] to compute principal components
and the factoextra R package [43] for extracting and visualiz-
ing the results.

2.3.3 K-means clustering

The cluster R package [44] was used to perform the K-means
algorithm. It was implemented in order to examine similar-
ities and dissimilarities between molecules. This algorithm
divide the observations (molecules in our case) into homoge-
neous clusters, based on their description by a set of quanti-
tative variables (molecular descriptors in our case). The ad-
vantage of K-means clustering is that the assignment of ob-
servations to different clusters during iteration is reversible.
This assignment is irreversible with Agglomerative Hierarchi-
cal Clustering. In this work, the optimal number of clusters
was determined using elbow method. This method computes
the total within-cluster sum of squares (WSS) as function of
the number of possible clusters. The total WSS measures the
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compactness of the clustering and it must be as small as pos-
sible. As a rule of thumb, we pick the number correponding
at a significant decrease in the total WSS. Moreover, the K-
means algorithm is incremented with several initializations to
ensure a best classification. Furthermore, Silhouette analysis
is used as cluster validation approach evaluating the goodness
of clustering algorithm results.

2.3.4 Cluster characterization by molecules

The cluster centroid is a fictional mean observation, it is better
to use a real observation to understand the average behavior
of molecules in each cluster. The closest point to the cluster
centroids is called parangon [45]. Therefore, we can describe
the overall behavior of the molecules in each cluster by their
respective parangons. In addition, a specific molecule (also
called extreme molecule) in each cluster, is defined as the fur-
thest molecule to the other cluster centroids [45].

2.3.5 Cluster characterization by descriptors

The purpose of this analysis is to select the dominant
molecular descriptors characterizing each cluster. The mean
of one group for this descriptors is computed and compared
to the overall mean according to [46] :

Xjk—X;

S? n—ny

n \ n—1
Where % and X; are the mean of x; in cluster k and the
mean of x; in the data set, respectively. On the other hand, ny
and s; are the number of observations in the cluster k and the

standard deviation of x; in the data set, respectively. In this
statistical test, we consider the p.value :

v.test =

D

p.value = P(|Z| > |v.test|), Z~N(0,1) 2)

The quantity v.test can then be compared to the appropri-
ate quantile of the normal distribution. If this quantity is more
extreme than the quantile of the normal distribution, then the
descriptor is interesting to describe the group of molecules.
Moreover, the p.value is computed under the null hypothesis
(Hy : Xj; = X;). Indeed, if the p.value is less than to signif-
icance level 0.05, then X; is significantly different from ;.
Accordingly, the corresponding molecular descriptor charac-
terize the & cluster molecules. The statistical test was con-
ducted using FactoMineR R package. More details related to
this statistical test can be found at [45][47].

2.3.6 Partial least squares regression

PLS regression is more appropriate when the number of
molecular descriptors are highly collinear [48]. Indeed, the
chemical, physical, quantum and steric properties are neces-
sarily correlated for a given molecule. This is a reflection of
the innate properties of the system and additional data col-
lected in the same way will show the same collinearity. Mul-
tiple linear regression (MLR) is very sensitive to the collinear-
ity problem of variables. Another source of redundancy in a
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data set, which may be more difficult to identify, is where a
descriptor is correlated with a linear combination of two or
more of the other descriptors in the set [49]. Thereby, PLS re-
gression is a useful alternative to the MLR model fitted using
ordinary least squares. In this work, regression diagnostics
for detecting possible outliers was carried out by computing
leverage values (h;) and studentized deleted residuals (7).
The diagonal elements of the hat matrix, denoted leverage val-
ues, are used for identifying outlying X observations. A lever-
age values greater than 2(k+ 1/n) are considered to indicate
outlying cases with regard to their X values [49]. On the other
hand, the magnitude of the studentized residuals are used for
identifying outlying Y observations. Finally, the model va-
lidity is judged using the squared correlation coefficient (R?)
and the Fisher test for significance of the regression equation.
The squared bootstrapping correlation coefficient (R%om) and
the leave-one-out cross-validated coefficient (Q7,,) are used
to measure a model’s predictive ability [50].

3 Results and discussion

The first step in this statistical study is to select the most
relevant molecular descriptors. As shown in Fig. (1), each
row in this graph represents a model. The black rectangles in
the columns indicate the descriptors included in the given

Table 2: The selected molecu-
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indicate the subset of predictors that do the best at meeting
well-defined objective criterion, BIC in our case. As a result,
the best subset of descriptors providing a good prediction of
the response variable corresponds

(Intercept) —
HE —
Eele
Density —
Etot
MD
Vol
Area
LogP —
Esol —
HOMO —
Refract.
Polariz. -

Figure 1: Variables selection by exhaustive search.

lar descriptors [ Molecules [ LogP [ Etot | Eele [ Density | HE | Esol |
1 -0.47 | -157277.76 | -1060188.50 | 1.2424 | -11.91 | -10.0496
2 0.32 | -185195.09 | -1254494.50 | 1.2875 | -11.66 | -13.9294
3 -1.26 | -129363.42 | -887649.50 1.1987 | -11.96 | -20.8428
4 -1.26 | -129365.35 | -882216.62 1.2018 | -12.05 | -20.0789
5 -1.04 | -121062.85 | -831345.25 1.1557 | -12.32 | -18.7058
6 0.35 | -122557.16 | -874012.81 1.1769 | -13.04 | -15.2429
7 -2.31 | -126691.17 | -929386.06 1.1185 | -14.31 | -32.5654
8 -2.39 | -126014.70 | -936863.43 1.1313 | -14.91 | -10.8898
9 -2.98 | -134067.21 | -1009961.60 | 1.1455 | -15.37 | -17.9581
10 -1.16 | -162363.14 | -1181965.80 | 1.2501 | -12.63 | -08.5868
11 -0.36 | -190280.84 | -1428270.80 | 1.2876 | -12.03 | 04.2343
12 -1.95 | -134450.53 | -990701.06 1.2040 | -12.75 | -14.3706
13 -1.95 | -134450.03 | -1000951.60 | 1.2003 | -13.04 | -11.3748
14 -1.72 | -126152.00 | -900191.31 1.1590 | -13.45 | -13.0216
15 -0.93 | -154063.93 | -1128375.30 | 1.2044 | -12.92 | 03.1747
16 -2.10 | -128717.57 | -944312.37 1.1596 | -13.56 | -17.9294
17 -1.45 | -125675.35 | -950223.50 1.2405 | -13.40 | -14.3414
18 -1.16 | -162366.01 | -1214797.70 | 1.2449 | -12.53 | 02.0885
19 -2.70 | -139583.73 | -1014158.00 | 1.1899 | -13.12 | -13.9261
20 -2.79 | -144038.90 | -1225421.30 | 1.1083 | -14.43 | 01.9731
21 -3.54 | -145960.12 | -1331395.50 | 1.0753 | -11.20 | -07.2194
22 -3.36 | -153140.14 | -1483806.00 | 1.0558 | -10.32 | -02.1201
23 (REF) | -1.19 | -150493.03 | -1018030.80 | 1.1972 | -11.92 | -07.8499

model. While, the white rectangles indicate that the cor-
responding descriptors are not included. The best choose of
descriptors will balance fit with model size. This criterion is
chosen because it penalizes larger models more heavily and
will tend to select smaller subset of descriptors in comparai-
son to other criteria [49]. The black rectangles of the first row

to BIC = —31. The selected descriptors presented in Tab.(2)
are : octanol/water Partition Coefficient (Log P), Electronic
Energy (Eele), Total Energy (Etot), Solvation Energy (Esol),
Hydratation Energy (HE) and Density. This choice is a com-
promise between a good predictive QSAR model and a mini-
mal number of molecular descriptors.
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3.1 Cluster analysis

As mentioned above, PCA is used as a preprocessing step.
Keeping the first components makes the clustering more ro-
bust because it eliminates random fluctuations and provides
more stable clusters. Fig.(2) shows the optimal number of
clusters using albow method. We can see from this figure an
elbow at three clusters. By adding more clusters than that we
get relatively smaller gain of total WSS. As can be seen in
Fig.(3), the first two principal components account

100
I

80
I

optimal number of clusters k =3

Total within sum of square

20
I

N
S

6 8 10
Number of clusters

Figure 2: Optimal number of clusters.

for 78.20% of the total inertia. This figure presents the
three clusters obtained from K-means algorithm. Each clus-
ter, groups a homogeneous class of molecules with respect
their molecular descriptors. The percentage of molecules re-
tained in each cluster are 56.52%, 30.44% and 13.04% in the
red, green and blue clusters, respectively.

Green cluster

20

2nd principal component 29.80 %

Blue cluster
Y4 /
o |
I
Red cluster 22
s 4 !
T T T T
-2 0 2 4

1st principal component 48.40 %

Figure 3: Principal component scatter plot with colored clusters and
95% confidence ellipses.

Fig.(4) illustrates the plot of the silhouette width for
molecules in each cluster. Silhouette analysis is a cluster val-

Kenouche et al.

3 clusters C;
n=23 j: njlaveieg s
1: 71043
5
7
8
3
4 2: 13| 0.52
9
17
12
13
19
6
21
22 3: 3064
20
T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Silhouette width s;
Average silhouette width : 0.51
Figure 4: Silhouette analysis for K-means clustering.

idation approach measuring how well an observation is clus-
terd. In each cluster, we observe a positive silhouette width
and an average value greater than 0.50. This result proves
that the molecules are very well clustered and there are no
molecules placed in the wrong cluster. An overall measure
of the goodness of a clustering can be also obtained by com-
puting the average silhouette width of all clusters. For this
classification, we obtained a value of 0.51, which confirms a
good classification.

3.1.1 Cluster characterization

The parangons of the red, green and blue clusters are the
molecules 14, 10 and 21, respectively. The specific molecules
of the red, green and blue clusters are the molecules 7, 2
and 22, respectively. For example, the molecule 22 is the
furthest from the red and green cluster centroids, that is
why it is specific compared to other molecules belonging
to the blue cluster. The sens “specific” is used to describe
an enhancement of distinctive characteristics. Concerning
the cluster descriptors characterization, it is important to
emphasize that only well projected descriptors on the factor
map can be interpreted. We can see from Fig.(5) that the
squared cosines between the descriptors and its projections
are higher than 0.50.

Consequently, all the descriptors are well projected and
can be interpreted. The following table containing statistics
related to the statistical test. From the Tab. (3), we can see
that the particular descriptors are significant because their p-
values are less than to significance level 0.05 (rejecting the
null hypothesis). The amplitude of the v.test values reveal
the degree of influence of the corresponding molecular de-
scriptors. A positive value suggests that the corresponding
molecular descriptor, for the molecules belonging to the k"
cluster, is significantly higher than the overall mean of all the
molecules. A negative value suggests that the correspond-
ing molecular descriptor, for the molecules belonging to the
k' cluster, is significantly less than the overall mean of all
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10

05
|

2nd principal component 29.80 %
-05 00
|

-10
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1st principal component 48.40 %

Figure 5: Graph of variables and the quality of projection on the
factor map.

the molecules. For the red cluster, the largest v.test values
are observed for the descriptors Total Energy, Electronic En-
ergy, Hydratation Energy and Solvation Energy. These are
the most characteristic molecular descriptors of the red clus-
ter molecules. Furthermore, the descriptors Total Energy and
Electronic Energy contribute positively, which means that the
red cluster molecules show a molecular Total Energy and
Electronic Energy significantly higher than the overall mean
of all other molecules. Similarly, these molecules show a Hy-
dratation Energy and Solvation Energy significantly less than
the overall mean of other molecules. Moreover, all the molec-
ular descriptors characterizing the red cluster have the high-
est values for the corresponding specific molecule (molecule
number 7). A similar interpretation is applied to the green
and blue clusters. The descriptor Total Energy seems to be
the one distinguishing the red and green clusters. This effect
is visible from

Kenouche et al.

the correlation circle, see Fig. (5). The descriptor Total
Energy is highly correlated to the first principal component.
The correlation coefficient between the descriptor and this
dimension is 0.99. These results are confirmed by the v.test
values obtained for both clusters, see Tab. (3). According
to these values, the descriptor Total Energy characterizes
both clusters but with opposite signs. By comparing the
chemical structure of the molecules belonging to these
clusters, the chemical entities are mainly distinguished by
the presence or not of the trifluoromethyl group. It was
proven that compounds with this functional group have an
appropriate pharmaceutical activity. Indeed, lipophilicity
conferred by the trifluoromethyl group exhibit improved
bioavailability, is responsible for leading to a smaller effec-
tive dose and inhibition of biological processes by reversible
binding to enzymes. This property also promotes drung
transport by easily crossing lipophilic barriers and drug
receptor hydrophobic interactions in biological system [51].
Moreover, even if no barrier has to be crossed (in this case
for example, in vitro studies), the drug is required to interact
with its target (enzyme or receptor) in which the bindig site
is usually hydrophobic. That is why the enhancement of the
hydrophobic nature of the drug improves its capability to
cross the hydrophobic barrier and/or to bind to the target [52].
Unlike molecules belonging to red cluster, the green cluster
is homogeneous in terms of cytotoxicity. All the molecules
belonging to this cluster record a strong activity. The best
cytotoxic activity was exhibited by compound containing the
group No. 11, see Fig.(6).

Therefore, we can suspect a possible correlation between
the trifluoromethyl group and cytotoxic activity of these
molecules. Probably, this group is most correlated to bind-
ing affinity.

3.2 PLS regression

The Fig.(7) summarizes a matrix of linear correlation coeffi-
cients between each pair of descriptors. This correlogram is
useful to highlight the most correlated descriptors. For more
visibility, only the upper triangular part of matrix is visual-
ized. The pairs of colinear descriptors are identified using a
correlation significance test.

Table 3: The Characteristic | Clusters [ CMD | vitest | Xjk \ X | p.value |
Molecular Descriptors (CMD) Redcluster | Etot | 3.8015 | -1.20e+05 | -142e+05 | 9.95¢-05
Eele 3.8534 | -9.34e+05 | -1.06e+06 | 1.16e-04
HE -2.3385 | -13.32e+00 | -1.28e+01 | 1.93e-02
Esol -3.5235 | -17.01e+00 | -1.12e+01 | 4.25¢-04
Green cluster | Density | 3.1449 1.24e+00 1.18e+00 | 0.0016
LogP | 2.7406 | -7.07e-01 | -1.62e+00 | 0.0061
Esol 2.4475 -441e+00 | -1.12e+01 0.0143
Eele -2.0613 | -1.18e+06 | -1.06e+06 | 0.0392
Etot -3.8414 | -1.66e+05 | -1.42e+05 | 0.0001
Blue cluster LogP | -2.8009 | -3.23e+00 | -1.62e+00 | 0.0050
Eele -2.8556 | -1.34e+06 | -1.06e+06 | 0.0042
Density | -3.1637 | 1.07e+00 1.18e+00 | 0.0015
WWW.SIFTDESK.ORG 6 Vol-2 Issue-3
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Indeed, the p.values are calculated for testing the null
hypothesis (no correlation) against the alternative that there
is a nonzero correlation.

Green cluster
Cl
o CFy CF, CFy
CF, CF, CF, \Q/
\q NH NH

N°2 (4.095)

N°1 (4.063)

© /Q/ : 5
SN S ° Cl
/ H H

CFy

N°10 (4.025) N°11 (4.016)
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Figure 6: Clustering results of Benzothiazole derivatives.

The size and color intensity of the circle are proportional
to the correlation coefficient. The positive and negative
correlations are displayed in blue and red colors, respectively.
In the above figure, correlations with a p.value higher than
0.05 is no significantly different from zero. Consequently,
the corresponding descriptors are collinear. The checked
values indicate a p.value less than 0.05 and therefore the
corresponding descriptors are not correlated.

It follows from these results that the selected descriptors
exhibit a significant inter-correlation. A strong correlation (R
= 0.80) was observed between descriptors Total Energy and
Electronic Energy. Indeed, the same information expressed
in different forms. As a result, the descriptor Electronic
Energy is excluded because it is the least correlated to
the response variable. Similarly, the descriptors Density

Kenouche et al.

and LogP exhibit a correlation of 0.78. These descriptors
have approximately the same degree of correlation with the
response variable. We chose to keep the descriptor LogP
to facilitate the interpretation of the regression results. The
values of observed cytotoxic activities, those computed by
PLS equations and regression diagnostics are listed in the
Tab. (4).
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Figure 7: Graph of correlation matrix with the significance level

First, we examine the results of the regression diagnos-
tics of red cluster molecules. The leverage value of molecule
number 7 is greater than the threshold 0.61 (8/13). This ob-
servation creates a false correlation because the squared

Table 4: Diagnostic statistics for regression

[ Green cluster ]

Molecules | Obs. pIC50 | Pred. pIC50 hii ri
1 4.0630 4.0869 0.4648 | -1.3863
2 4.0948 4.0750 0.7723 | 1.7449
10 4.0248 4.0157 0.6342 | 0.6376
11 4.0162 4.0377 0.7627 | -1.8637
15 4.1000 4.0811 0.6551 | 1.2945
18 4.0503 4.0368 0.3275 | 0.7001
REF 4.0310 4.0458 0.3835 | -0.8031
[ Red cluster ]
Molecules | Obs. pIC50 | Pred. pIC50 hii rr
3 4.0917 4.0871 0.2699 | 0.0894
4 4.0744 4.0832 0.2357 | -0.1708
5 4.0808 4.1066 0.3324 | -0.5418
6 4.0489 4.1111 0.2337 | -1.2159
7 4.5289 4.4679 0.7810 | 2.2267
8 4.2803 4.1939 0.4443 | 1.9824
9 4.2054 4.3182 0.4650 | -2.6353
12 4.0378 4.0430 0.2021 | -0.0994
13 4.0333 4.0223 0.2277 | 0.2146
14 41114 4.1029 0.1630 | 0.1604
16 4.1372 4.1794 0.0835 | -0.7533
17 4.1600 4.1198 0.1443 | 0.7435
19 4.0993 4.0542 0.4174 | 1.0147
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correlation coefficient obtained without and with this
point increases from 0.80 to 0.85, respectively. From the Stu-
dentised deleted residuals column, the values of observations
7 and 9 are greater than the threshold |2|. While all other ob-
servations have studentized deleted residuals between -2 and
2. The observations 7 and 9 are outlying with respect to its
y values. Given these result we conclude that observations
7 and 9 are influential. These points were not taken into ac-
count when establishing the predictive models. For the green
cluster molecules, no observations with large leverage values
were detected. Therefore, there is no outlying with respect to
its x value, since its x value is near the middle of the other
x values. In addition, no observations with large Studentised
deleted residual values were detected. Moreover, Tab. (4)
shows a good agreement between experimental and predicted
values. In order to highlight the weight of each descriptor, the
regression model is written with scaled variables. The stan-
dardized regression coefficient value of each descriptor high-
lights the relative importance of the descriptors in determina-
tion of biological activity of the compounds. In this study,
Cross-validation is used as a sound method for choosing the
number of components in PLS regression. For the green clus-
ter molecules, the PLS regression equation is

Vereen = 122.34+ 1.50x, + 1.24x, +0.44x5  (3)
R*=0.67 R

0%, =066 F=9.79 p-value=0.0166

=0.60 R3,,,=0.71 B=1000

Where y = y/s, and x/j = Xj/sx;. The variables xi, x
and x3 are the following molecular descriptors : octanol/water
Partition Coefficient, Total Energy and Solvation Energy, re-
spectively. Parameter B is the number of bootstrap replica-
tions. The molecular descriptors x; (LogP) and x, (Etot) ex-
hibit relatively the same influence on cytotoxic activity. The
descriptor x3 (Esol) is approximately two times less influen-
tial on cytotoxic activity than the two previous descriptors.
This equation reveals that the positive coefficient of LogP ex-
plains that any increase in lipophilicity of molecules causes an
enhancement in the cytotoxic activity. This results is in agree-
ment with the classification of molecules using K-means clus-
tering. As pointed out above all the molecules belonging to
the green cluster are provided with at least one trifluoromethyl
group. The partition coeffcient LogP is an estimation of the
drug’s hydrophobicity in its totality and represents an impor-
tant measure of how well a drug will be transported to its tar-
get and will bind to its receptor [53]. In addition, hydropho-
bic drugs are often more willing to be metabolized, wich pro-
motes thier elimination. For the red cluster molecules, the
PLS regression equation is

Vieg = 58.41+0.003x, — 0.67x3 — 1.28x, @)
R*=080 R;;=0.75 Rp,p,=0.74 B=1000

07,,=0.78 F=3434 p-value=10910"*

Where x4 is the descriptor Hydratation Energy (HE). The
descriptor x, (Etot) exhibits a negligible role on antiprolifer-
ative activity. The descriptor x3 (Esol) is approximately two

Kenouche et al.

times less influential on cytotoxic activity than the descrip-
tor HE. The absence of LogP in this equation is a clue that
lipophilicity has no influence on these molecules.
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Figure 8: Scatter plot of predicted and observed pICsq for the green

cluster molecules. The dotted line represents the case where the both
biological activity are equal
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Figure 9: Scatter plot of predicted and observed pICsq for the red
cluster molecules. The dotted line represents the case where the both
biological activity are equal.

Fig.(9) and (8) show a good correlation between fitted and
observed biological activities. According to the goodness of
fit statistics, 67% and 80% of the variability in cytotoxic activ-
ity around its mean are explained by the PLS regression equa-
tions (3) and (4), respectively. In addition, these equations are
significant because both of their p.values are less than to sig-
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nificance level 0.05 (rejecting the null hypothesis). Moreover,
it is well known that cross validation is useful for overcoming
the problem of overfitting [50]. This problem refers to a situa-
tion when the model requires more information than the data
can provide. Indeed, in our case the difference between R?
and Q?,, not exceeding the threshold 0.30, confirming that
the two PLS regression models are not overfitted. A high
average R%D s and a cross-validation coefficient Q? greater
than 0.50 are a demonstration that the resulting models have
good predictive power and robustness. Moreover, the statisti-
cal quality of Eq. (4) is better than Eq. (3). It follows from
these results that the developed PLS regression equations can
be successfully applied to predict the antiproliferative activity
against breast cancer cells lines of Benzothiazole derivatives.

4 Conclusion

The aim purpose of this study was to design a robust and
reliable QSAR models to predict the anticancer activity based
on a dataset of 23 Benzothiazole derivatives. In this paper,
model selection by exhaustive search is used to identify the
best subset of molecular descriptors. Three distinct clusters
have been identified using K-means clustering. Each clus-
ter, groups a homogeneous class of molecules with respect
their molecular descriptors. Unlike molecules belonging to
the red cluster, the green cluster is homogeneous in terms of
cytotoxic activity. All the molecules belonging to this clus-
ter record a strong activity. The best cytotoxic activity was
exhibited by compound having the ligand No. 11. There-
fore, we suspected a possible correlation between the trifluo-
romethyl group and cytotoxic activity. According to the good-
ness of fit statistics, the PLS regression equations exhibited a
good agreement between fitted and observed biological activ-
ities. In addition, the F-statistic test revealed the significance
of both PLS equations. The values of bootstrapping correla-
tion coefficient R7 . and leave-one-out cross-validation co-
efficient Q7 , have revealed that the resulting models have
good predictive power and robustness. Therefore, the devel-
oped PLS equations can be successfully applied to predict the
antiproliferative activity against breast cancer cells lines of
Benzothiazole derivatives. Certainly, this work will stimulate
further experiments and theoretical investigations. Work is in
progress in order to clarify the role of trifluoromethyl group
for this class of molecules and to formulate more mechanis-
tic interpretations for consolidating robustness of this QSAR
modeling.
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