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ABSTRACT 
Yeasts have been used for the heterologous production of a range of enzymes. However, α-L-rhamnosidase produc-

tion in yeasts as well as its vast potential for biotechnological processes is less reported. α-L-Rhamnosidase is one of 

the important biotechnologically attractive enzymes in several industrial and biotechnological processes. In food and 

agriculture industries, the enzyme catalyzes the hydrolysis of hesperidin to release L-rhamnose and hesperidin gluco-

side, industrial removal of bitterness from citrus juices caused by naringin, and enhancing aroma in grape juices and 

derived beverages. In pharmaceutical and chemical industries, this enzyme is used in the structural determination of 

polysaccharides, glycosides and glycolipids, metabolism of gellan, conversion of chloropolysporin B to chloropoly-

sporin C, and production of prunin. Rhamnosidases are extensively distributed in fungi and bacteria while their pro-

duction from yeast sources is less reported. Yeast rhamnosidase is very important as it is produced in short-duration 

fermentation, with enhanced shelf life, high thermal stability, capable of retaining juice flavor, and is non-toxic for 

human consumption. In this review, an attempt has been made to fill up this gap by focusing on production, purifica-

tion, characterization, structural and molecular biological studies of yeast rhamnosidase and its potential biotechno-

logical applications. 
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INTRODUCTION 

Yeasts are groups of unicellular fungi that belong 

to the phylum Dikaryomycota. Two main groups 

of yeasts classified are Ascomycetes or Basidio-

mycetes (Barnett et al. 2000). The yeasts are 

characterized by single cells that reproduce by 

budding from a narrow or broad base (e.g. Sac-

charomyces) or fission from a broad base (e.g. 

Schizosaccharomyces). Additionally, pseudohy-

phae or true hyphae or both may be present 

(Kurtzman and Fell 1998). The application of 

yeasts is not only restricted to the traditional pro-

cesses of making bread, wine, and beer, though 

yeasts are also a rich source of a variety of indus-

trially essential enzymes such as rhamnosidase, 

amylase, protease, invertase, etc. In this chapter, 

we targeted the enzyme α-L-rhamnosidases pro-

duced by yeast. In addition, recent research has 

generally focused on yeasts as biocontrol on 

plant disease management for managing posthar-

vest diseases, mostly of fruit in agriculture sec-

tors (Pimenta et al. 2009). 

 

α-L-Rhamnosidase (3.2.1.40) are exo-type en-

zymes that remove terminal α-L-rhamnosyl 

groups at the ends of polysaccharides and glyco-

sides containing L-rhamnose. The enzyme con-

verts the bitter glycoside naringin to the less-

bitter prunin by cleavage of an α-(1→2) bond 

between L-rhamnose and glucose (Magario et al. 

2009) (Fig. 1). Many other natural glycosides, 

which include rutin, quercitrin, hesperidin, dios-

min, and terphenyl glycosides, containing termi-

nal α-rhamnose can act as substrates of α-L-

Rhamnosidase (Ribeiro 2011). Rhamnosidases 

are important industrial enzymes of great signifi-

cance in the current biotechnological area with 

applications in food (Spagna et al. 2000), agricul-

ture, and pharmaceutical (Monti et al. 2004) in-

dustrial processes for the bioconversion of natu-

ral or synthetic rhamnosides e.g. the elimination 

of hesperidin crystals in orange juice, for aroma 

enhancement of wine, in steroid transformation, 

in the structural study of bacteria polysaccharide, 

and in the production of L-rhamnose from glyco-

sides (Gallego et al. 2001; Soria and Ellenrieder 

2002; Manzanares et al. 2001; Mutter et al. 1994; 

Puri and Banerjee 2000).  

Fig. 1 Hydrolysis of naringin into prunin and rhamnose by α-L-rhamnosidase. 



Rajesh Kumar Singh et al. 

———————————————————————————————————————————————————

WWW.SIFTDESK.ORG 315 Vol-6 Issue-1 

SIFT DESK  

Several microorganisms use α-L-rhamnosidase to 

release L-rhamnose as a source of carbon and energy 

(Twerdochlib et al. 1994). The enzyme has been re-

ported from animal tissues, plants, microbes like 

yeasts, fungi, and bacteria (Yadav et al. 2010). De-

spite α-L-rhamnosidases being biotechnologically 

important enzymes, only a few crude rhamnosidase 

preparations hesperidinase, and naringinase are com-

mercially available so far. All of these preparations 

are presently obtained from the genera Aspergillus 

and Penicillium. In the case of yeast strains, there is a 

lack of information on the production, purification, 

characterization, preparation, and evaluation of α-L-

rhamnosidase. Only a few yeast strains Saccharomy-

ces, Hansenula, Debaryomyces, Candida, Aureo-

basidium pullulans (Miklosy and Polos 1995; Rosi et 

al. 1995; Mcmahon et al. 1999; Yadav et al. 2010), 

Pichia angusta (Yanai and Sato 2000) and Clavispora 

lusitaniae (Fig. 2) (Singh et al. 2015 and 2018) have 

been reported. Yeast α-L-rhamnosidase possesses 

characteristics of high specificity, increased retention 

of juice flavor, nutrients, and economic viability with 

a strong ability to remove the bitter taste from citrus 

fruits. 

 

There is only one review available on α-L-

rhamnosidases by Yadav et al. 2010. Therefore, our 

responsibilities to research and focus on this area and 

provide more information on rhamnosidases. In this 

article, an attempt has been made to review the recent 

literature and summary of yeast rhamnosidases and 

their potential applications.  

 

Sources 

Naringinase (α-L-rhamnosidase and ß-D-glucosidase) 

has been reported in the literature since the earliest of 

1938, from celery seeds (Hall1938). Other plant 

sources of α-L-rhamnosidase are grapefruit leaves 

(Thomas et al.1958), Rhamnus daurica (Suzuki 

1962), and Fagopyrum esculentum (Bourbouze et al. 

1976). The α-L-rhamnosidases from only two animal 

sources, viz. Turbo cornutus liver and pig liver have 

been reported (Kurosawa et al. 1973; Qian et al. 

2005). Microorganisms are the main sources of α-L-

rhamnosidase, mainly filamentous fungi such as As-

pergillus, Circinella, Eurotium, Fusarium, Penicilli-

um, Rhizopus, and Trichoderma (Scaroni et al. 2002). 

The induction of α-L-rhamnosidases production in 

several fungal strains such as Acremonium persici-

num, Circinella muscae, Emericella nidulans, Fusari-

um oxysporum, Mortierella alpine, Penicillium oxali-

cum, Rhizopus arrhizus, Talaromyces flavus, and 

Trichoderma harzianum, using L-rhamnose, naringin, 

rutin, hesperidin as inducers (Monti et al. 2004). As-

pergillus niger and Penicillium decumbens are the 

most commonly used species for their production 

with a potential value in oenology, and their enzymat-

ic activities have been well characterized (Gallego et 

al. 1996; Manzanares et al. 2003; Orejas et al. 1999; 

Singh et al. 2015).  

Fig. 2 Scanning electron micrographs of yeast strain Clavispora lusitaniae producing rhamn 

sidase enzymes. (A) Absence of naringin and (B) Presence of 0.2% naringin (Singh et al. 2015) 
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The first bacterial α-L-rhamnosidase was puri-

fied from the genus Bacteroides (Jang and Kim 

1996). Other bacterial strains which produce α-L

-rhamnosidases are thermophilic bacterium 

(Birgisson et al. 2004), Fusabacterium (Park et 

al. 2005), Pseudoalteromonas species, Ralstonia 

pickettii (Orrillo et al. 2007), Lactobacillus aci-

dophilus (Beekwilder et al. 2009), Pediococcus 

acidilactici (Michlmayr et al. 2011), Clostridium 

stercorarium (Zverlov et al. 2000), Sphingo-

monas paucimobilis (Hashimoto and Murata 

1998), Bacillus sp. (Hashimoto et al. 1999) and 

Corticium rolfsii (Kaji and Ichimi 1973). In a 

few reports, low levels of activity have been 

found in yeast belonging to genus Saccharomy-

ces, Hansenula, Debaryomyces, Candida, and 

Aureobasidium (McMahon et al. 1999; Miklosy 

and Polos 1995; Rosi et al. 1995; Yadav et al. 

2010), P. angusta (Yanai and Sato 2000), Clav-

ispora lusitaniae (KF633446), Clavispora lusita-

niae (KF633447), Candida sp. YS12A 

(KF680225) and Candida hyderabadensis 

(KF680226) (Singh et al. 2015). All yeast strains 

producing α-L-rhamnosidase are summarized in 

Table 1. 

 

Assay methods 

There are various methods available for measur-

ing α-L-rhamnosidase activity, some are men-

tioned below: 

1. Romero et al.'s (1985) method using p-

nitrophenyl α-L-rhamnopyranoside as a substrate 

is a convenient and most common method for 

assaying α-L-rhamnosidase activity. The absorb-

ance of the mixture is determined spectrophoto-

metrically at 400 nm (A400). The amount of en-

zyme that released 1 µmol of p-nitrophenol in 1 

min is defined as one unit of α-L-rhamnosidase 

activity (E400nm p-nitrophenolate= 21.44 mM- 

1cm- 1) (Fig. 3). The use of a synthetic substrate 

did not affect the pH, temperature, or ionic 

strength optima of the enzyme (Puri 2012). 

Table 1. List of yeast strains producing α-L-rhamnosidase enzyme 

S. No. Yeast 
Enzyme ac-

tivity 
pH opti-

ma 

Tempera-
ture optima 

(oC) 

Molecular 
Mass (kDa) 

pI Reference 

1. Clavispora lusitaniae KF633446 0.058 UmL-1 4 50 - - 
Singh et al. 2018, 
Singh et al. 2015 

2. Clavispora lusitaniae KF633447 0.046 UmL-1 - - - - Singh et al. 2015 

3. Candida sp. YS12A KF680225 0.033 UmL-1 - - - - Singh et al. 2015 

4. Candida hyderabadensis KF680226 0.029 UmL-1 - - - - Singh et al. 2015 

5. Saccharonryces cerevisiae - - - - - Miklosy et al. 1995 

6. Hansenula anomala - - - - - Miklosy et al. 1995 

7. Debaryomyces ploymorphus - - - - - Rosi et al. 1995 

8. Aureobasidium pullulans - - - - - Mcmahon et al. 1999 

9. Candida guillermondii - - - - - Mcmahon et al. 1999 

10. 
Saccharomyces cerevisiae IAM 
4S61 

13.7 mUL-1 - - - - Yanai and Sato 2000 

11. Crptococcus terreus IFO 0727 6.5 mUL-1 - - - - Yanai and Sato 2000 

12. Pichia angusta X349 34 mUL-1 6 40 90 4.9 Yanai and Sato 2000 

13. Pichia capsulate X91 28.8 mUL-1 - - - - Yanai and Sato 2000 

14. Pichia guilliermondii NPCC1053 33 Ug-1 6 - - - Rodriguez et al. 2010 

15. Pichia pastoris MutS - - - - - Markošová et al. 2015 
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2. Spectrophotometric determination of flavanones 

according to the alkaline diethylene glycol method of 

Davis (1947) is used to evaluate naringinase (α-L-

rhamnosidase + ß-D-glucosidase) activity. In this 

method, naringin reacts with diethylene glycol in an 

alkaline solution to produce a yellow color which is 

measured at a wavelength of 420 nm (A420) (Davis 

1947). 2,4-Dinitrosalicylic acid (DNS) method through 

rhamnose and glucose determination was also applied 

for naringinase activity (Miller 1959).  

 

3. Ribeiro and Ribeiro (2008) developed an effective 

HPLC-PAD method for the simultaneous determina-

tion of naringin, prunin, and naringenin. The method 

was linear, precise, and selective for naringin and 

naringenin identification and quantification (Puri 

2012). 

 

4. The enzyme activity toward naringin and hesperidin 

was assayed for determining rhamnose release by us-

ing high-performance anion-exchange chromatography 

with pulsed amperometric detection (HPAEC-PAD) 

on a CarboPac PA1 anion-exchange column. One unit 

of rhamnosidase activity was defined as the amount of 

enzyme required to release rhamnose at 40 °C and pH 

of 4.0 at the rate of 1 μmol min− 1 (Koseki et al. 2008). 

 

5. Assays with nonchromogenic substrates (naringin, 

hesperidin, rutin, and rutinose) were conducted by 

Michlmayr et al. (2011). Rhamnose, glucose, and ruti-

nose were quantified by HPLC analysis with a Car-

boPac PA 1 column and pulsed amperometric gold 

electrode detection. One unit of rhamnosidase activity 

is expressed as released rhamnose (μmol) per min at 

37°C and pH 5.5. 

 

6. In few reports, L-rhamnose was separated using 

TLC and quantified to measure α-L-rhamnosidase ac-

tivity by Victor et al. 1987 and Feng et al. 2005. 

 

Yeast rhamnosidase 

The fungal and bacterial sources of α-L-rhamnosidases 

have been thoroughly explored; although yeast rham-

nosidase has rarely and is less studied and needs to 

explore more extensive research studies. At present, 

there are only one α-L-rhamnosidases of yeast origin 

Pichia angusta X349 that has been purified and char-

acterized (Yanai and Sato 2000). Here we documented 

some reports on α-L-rhamnosidase activity from yeast 

that have been published (Table 1). 

 

Production, purification, and characterization 

Optimization of rhamnosidase production from Clav-

ispara lusitaniae KF633446 by using multivariate re-

sponse surface methodology was studied by Singh et 

al. (2018). The observed optimized parameter for high-

est rhamnosidase production in the minimal medium 

was (w/v) 0.6% rhamnose, 0.4% yeast extract, 35±5 °

C temperature, and 4 pH. 

 

Yanai and Sato (2000) examined 386 yeast strains for 

α-L-rhamnosidase activity using L-rhamnose as the 

inducer. The screening results showed that α-L-

rhamnosidase activity was generally restricted to spe-

cies S. cerevisiae, C. terreus, P. angusta, and P. capsu-

lata. One strain, P. angusta X349, was selected as the 

best producer of the enzyme. Selected strain P. an-

gusta X349 has been purified to homogeneity using 

ammonium sulphate precipitation and column chroma-

tography on concanavalin A-Sepharose, DEAE Bio-

Gel A agarose, Rhamnose-Sepharose 6B, and hydrox-

yapatite. The P. angusta X349 rhamnosidase was a 

monomeric protein with a molecular mass of 90 kDa 

and the isoelectric point at 4.9. The enzyme was opti-

Fig. 3 Hydrolysis of p-nitrophenyl α-L-rhamnopyranoside into p-nitrophenol and rhamnose by α-L-rhamnosidase. 
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mally active at pH 6.0 and around 40 oC. The Ki for L-

rhamnose inhibition was 25 mM. The enzyme was 

inhibited by Cu2+, Hg2+, and p-chloromercuribenzoate. 

The α-L-rhamnosidase was highly specific for α-L-

rhamnopyranoside and liberated rhamnose from nar-

ingin, rutin, hesperidin, and 3-quercitrin. 

 

The α-L-rhamnosidase activity of Pichia guillier-

mondii NPCC1053 indigenous wine strain from the 

North-Patagonian region was evaluated on various 

culture media (Rodriguez et al. 2010). The αRh activi-

ty of P. guilliermondii was associated with its cellular 

growth and the maximum value of total enzymatic ac-

tivity (33 Ug-1 dry weight) under optimal conditions 

(YNB- rhamnose supplemented with ammonium sul-

phate) was at the end of the exponential growth phase 

(sixth day). This study contributes to the knowledge of 

α-L-rhamnosidases from yeast origin and the enzyme 

that could be used in the production of more aromatic 

young wines. 

 

A total of thirty yeast strains were isolated from a 

whey beverage and screened for α-L-rhamnosidase 

enzyme production (Singh et al. 2015). Of these, only 

four isolates Clavispora lusitaniae (KF633446), Clav-

ispora lusitaniae (KF633447), Candida sp. YS12A 

(KF680225) and Candida hyderabadensis (KF680226) 

were capable of producing the α-L-rhamnosidase en-

zyme by hydrolyzing naringin. The production of α-L-

rhamnosidase varied in the range of 0.029 ± 0.00 to 

0.058 ± 0.02 U mL–1. Clavispora lusitaniae KF633446 

was the best producer of an enzyme. The enzyme was 

most active at pH 4 and temperature 50 °C using p-

nitrophenyl-α-L-rhamnopyranoside as the substrate 

(Singh et al. 2015). Maximum activity at pH 4 is close 

to that of fruit juice, making it suitable for use in fruit 

juices and wine. 

 

Pichia pastoris is presently one of the most favored 

microorganisms for recombinant enzyme production 

owing to its proficient expression system. The upscal-

ing of recombinant α-L-rhamnosidase production 

cloned in the MutS strain of P. pastoris KM71H was 

optimized by simplified methanol feeding protocol. 

Results showed that the specific activity of α-L-

rhamnosidase improved from 35 Umg-1 up to 82 Umg-1 

in the upscaled fermentation, which is the maximum 

specific activity of other recombinant and also wild 

producers described so far (Markosova et al. 2015). 

 

Molecular and structural biology 

Only some reports on the molecular and structural 

properties of α-L-rhamnosidase are available. The ram 

A is the first cloned α-L-rhamnosidase gene obtained 

from the anaerobe thermophilic bacterium, which be-

longs to the new type of glycoside hydrolase family 

(Zverlov et al. 2000). Several microorganisms includ-

ing yeast use α-L-rhamnosidase to release L-rhamnose 

as a source of carbon and energy. In the oxidative 

pathway for the catabolism of L-rhamnose, L-

rhamnose is first oxidized to L-rhamnono-γ-lactone by 

a NAD-utilising L-rhamnose-1-dehydrogenase. This 

inducible enzyme activity has been reported in various 

yeast species including Scheffersomyces stipitis, Aure-

obasidium (Pullularia) pullulans, and Debaryomyces 

polymorphus (Rigo et al. 1976; Vieira et al. 1979; 

Twerdochlib et al. 1994). Koivistoinen et al. (2012) 

studied the characterization of the gene cluster for L-

rhamnose catabolism in the yeast Scheffersomyces 

(Pichia) stipitis. The genes for L-rhamnose catabolism 

RHA1, LRA2, LRA3, and LRA4 but not LADH are 

clustered in Scheffersomyces (Pichia) stipitis and relat-

ed fungal species, located next to the cluster is a tran-

scription factor, TRC1, which is conserved among re-

lated species. Transcriptome analysis shows that all the 

catabolic genes and all genes in the cluster are up-

regulated on L-rhamnose. The LRA4 gene is not part 

of the cluster and it has several paralogues in L-

rhamnose utilizing yeasts, so the function of one of the 

paralogues, LRA41 by heterologous expression and 

biochemical characterization was also studied by them. 

 

To date, four structures have been resoluted from the 

GH78 rhamnosidase family. The first crystal structure 

of α-L-rhamnosidase RhaB from the Bacillus sp. GL1 

is accessible at 1.9Ǻ resolution. This protein is ho-

modimeric, consisting of four ß-sandwich domains, a 

core catalytic (α/α)6 barrel, contains 956 amino acid 

residues, and 106 kDa molecular mass (Cui et al. 

2007). The second structure of Streptomyces avermiti-

lis (SaRha78A; PDB code 3W5N) α-L-rhamnosidase 

was determined in complex with L-rhamnose, this pro-

tein is large, monomeric, and consisting of six domains 

(Fujimoto et al. 2013). The third structure, a putative α



Rajesh Kumar Singh et al. 

———————————————————————————————————————————————————

WWW.SIFTDESK.ORG 319 Vol-6 Issue-1 

SIFT DESK  

-L-rhamnosidase from Bacteroides thetaiotaomicron 

VP1-5482 (BT1001; PDB code 3CIH), determined in a 

structural genomics project is unpublished, also a ho-

modimer. More recently, the crystal structure of 

KoRha, a putative α-L-rhamnosidase from Klebsiella 

oxytoca has been determined at 2.7 Ǻ resolution with 

rhamnose bound in the active site of the catalytic do-

main. The structure reveals an elongated homodimer 

which is significantly smaller than those of the other 

earlier determined GH78 structures. Asp 222, the puta-

tive catalytic acid, is preceded by an unusual non-

proline cis-peptide bond which helps to project the 

carboxyl group into the active center (Neill et al. 

2015). 

 

No information on the three-dimensional structure of 

an α-L-rhamnosidase from yeast is available. So, there 

is a scientific demand to isolate the gene coding for α-

L-rhamnosidase and crystallize α-L-rhamnosidases 

from yeast and other sources. Structure analysis of 

family GH78 enzymes will help to clarify their mecha-

nisms of catalysis and substrate specificity and to im-

prove their potential application in a wide variety of 

industries. 

 

Industrial applications of α-L-rhamnosidase 

α-L-Rhamnosidases have several technical applica-

tions in the food, chemical, and pharmaceutical indus-

tries for the bioconversion of natural or synthetic 

rhamnosides (Table 2). 

Table 2. Biotechnological applications of α-L-

rhamnosidase enzyme. 

FOOD AND AGRICULTURE INDUSTRY 

Beverages 

Debittering of fruit juices  

Citrus juice turns bitter after extraction due to the 

chemical naringin (flavanoid) and limonin (limonoid). 

Naringin is the major component in citrus fruit with a 

very bitter taste. The enzyme naringinase is composed 

of α-L-rhamnosidase and β-D-glucosidase. Naringin 

(4,-5,7’-trihydroxyflavonone-7-rhamnoglucoside) is 

first hydrolyzed by an α-L-rhamnosidase activity of 

naringinase to rhamnose and prunin (one-third of the 

bitterness of naringin) which can be further hydrolyzed 

into glucose and naringenin by the β-D-glucosidase 

component of naringinase (Singh et al. 2015). Rham-

nose and prunin molecules have great potential, espe-

cially in the food and pharmaceutical industries (Fig. 

1). Singh et al. (2015) produced debittered kinnow 

beverage using α-L-rhamnosidase producing Clavispo-

ra lusitaniae KF633446 yeast. The decrease of nar-

ingin with storage was 443.00 ± 10.00 to 143.70 ± 

4.00 ppm due to the α-L-rhamnosidase activity. 

 

Removal of hesperidin crystals 

The crystallization of soluble hesperidin in the canned 

mandarin orange juice causes turbidity to the juice 

(Baker and Tatum 1986). The hesperidinase enzyme-

containing α-L-rhamnosidase activity produced by 

several fungi, especially Aspergillus niger is used to 

prevent the presence of hesperidin crystals in citrus 

products (Soares and Hotchkiss1998). Hesperidin and 

hesperidin glycosides treated with α-L-rhamnosidase 

are highly soluble in water and even stored for a long 

period without crystal precipitation (Miyake and Yu-

moto 1999). 

 

Aroma enhancement in wine  

Rhamnosidase (with β-glucosidase and arabinosidase) 

is used for aroma enhancement in winemaking. Mono-

terpene alcohols such as geraniol, linalool, and α-

terpineol are the most important flavoring substances 

in alcoholic beverages such as wine (Marais 1983; 

Mateo and Jiménez 2000) and sweet potato shochu 

(Ohta et al. 1990). A large number of mono-terpenes 

are present in odorless diglycoside conjugates, the hy-

drolysis of these diglycosides occur in two enzymatic 

steps (Günata et al. 1988; Zverlov et al. 2000). In a 

first reaction, depending on the conjugate, the glyco-

Industries Applications 

Food and Agri-
culture 
  
  
  

Beverages 
Debittering of fruit juices 
Removal of hesperidin crystals 
Aroma enhancement in wine 
Additives 
Gellan depolymerization 
Tomato pulp digestion 

Chemical Naringin extraction 
Rhamnose preparation 
Glycolipid’s production 

Pharmaceuti-
cal 

Lectin-directed enzyme activated prodrug therapy 
(LEAPT) 
Steroid’s biotransformation 
Ginsenosides production 
Antibiotics preparation 
Prunin preparation 
Flavonoids deglycosylation 
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sidic linkage is cleaved by either β-D-apiosidase, α-L 

arabinofuranosidase, or an α-L-rhamnosidase releasing 

the β-D glucoside. In a second reaction, the β-D-

glucoside is hydrolyzed by the action of a β-D-

glucosidase causing the release of glucose and a vola-

tile compound aromatically active (Gunata et al. 1988; 

Gunata 2002; Rodrı´guez et al. 2010). α-L-

Rhamnosidase from P. guilliermondii NPCC1053 is an 

indigenous yeast strain that was able to release mono-

terpenols and alcohols from grape glycosidic extracts 

(Rodriguez et al. 2010). P. angusta α-L-rhamnosidase 

may be useful in winemaking due to the high tolerance 

to glucose and ethanol, their specificity for the agly-

cone moieties of grape glycosides, and their hydrolytic 

activities to natural flavonoid rhamnoglycosides 

(Yanai and Sato 2000). 

 

Additives 

Gellan depolymerization 

Gellan, a bacterial exopolysaccharide, has broad appli-

cation in the food industry owing to its high viscosity 

in the presence of divalent cations (Cui et al. 2006). 

Used in the preparation of food additives from biopol-

ymers as well as in the preparation of sweeteners 

(Giavasis et al. 2000). Bacillus sp. GL1 was isolated to 

enzymatically modify the viscous properties of gellan 

gum (Hashimoto et al. 1999) and has a set of enzymes 

including an α-L-rhamnosidase responsible for the 

complete depolymerization of gellan gum (Cui et al. 

2006). 

 

Tomato pulp digestion 

Bacterial α-L-rhamnosidase activity was first attribut-

ed to the gut bacteria, which together with β-

glucosidase convert ingested flavonoid glycosides into 

their aglycone forms (Griffiths and Barrow 1972, Mac-

donald et al. 1983). The rhamnosidases from L. planta-

rum have been shown to convert flavonoid rutin from 

tomato into well-absorbed glucosides (Puri 2012, 

Beekwilder et al. 2009). 

 

Chemical industry 

Naringin extraction  

In industrial citrus processing, solid waste products are 

obtained, they are essentially constituted of peel and 

pulp. The citrus solid waste products are rich in fer-

mentable materials as sugars and pectins, high concen-

trations of flavanone glycosides, hesperidin, and nar-

ingin, and lower amounts of many other flavonoids. 

The purified α-L-rhamnosidase established hydrolysis 

of naringin extracted from kinnow peel thus endorses 

its industrial applicability for producing rhamnose 

(Puri et al. 2011). 

 

Rhamnose preparation 

α-L-rhamnosidase had potential in the manufacture of 

L-rhamnose by hydrolysis of natural glycosides con-

taining terminal L-rhamnose (Cheetham and Quail 

1991) (Fig. 1). Recombinant α-L-rhamnosidase has 

industrial applicability for the production of rhamnose 

and prunin from citrus peel waste (Kaur et al. 2010).  

 

Glycolipids production 

Glucolipid production from Candida bombicola 

sophorolipids by P. decumbens naringinase (α-L-

rhamnosidase + β-D-glucosidase) showed that the en-

zyme might be useful for the production of special fat-

ty acids (Saerens et al. 2009). 

 

Pharmaceutical Industry 

Lectin-directed enzyme activated prodrug therapy 

The lectin-directed enzyme-activated prodrug therapy 

(LEAPT) bipartite drug delivery system utilizes glyco-

sylated enzyme, localized according to its sugar pat-

tern, and capped prodrugs released by that enzyme. 

Prodrugs of doxorubicin and 5-fluorouracil capped by 

the nonmammalian L-rhamnosyl sugar unit have been 

efficiently synthesized and evaluated for use in the 

LEAPT system, released by synthetically rhamno-

sidase enzyme (Robinson et al. 2004; Garnier et al. 

2010). 

 

Steroids biotransformation 

The hydrolysis of diosgene (a saponin) by α-L-

rhamnosidase produces α-L-rhamnose and diosgenin 

which is used in the synthesis of clinically useful ster-

oid drugs such as progesterone (Elujoba and Hardman 

1987). Curvularia lunata rhamnosidase can remove L-

rhamnose from a number of steroidal saponins (Feng 

et al. 2007).  

 

Production of ginsenosides 

Glycosyl groups of ginsenosides can be cleaved by α-L

-rhamnosidase to produce ginsenosides with improved 
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activities. The ginsenoside-Rh1 obtained from gin-

senosides-Rg2 using α-L-rhamnosidase exhibits anti-

cancer activity (Ribeiro 2011). 

 

Antibiotics preparation 

The glycopeptides antibiotic chloropolysporin C is 

prepared from the related compound chloropolysporin 

B by enzymatic hydrolysis using Rhase (Sankyo 

1988). It exhibits antibacterial activity, useful in the 

treatment and prophylaxis of infections, and is a 

growth-promoting agent for animals. 

 

Prunin preparation 

The flavonoid prunin is produced from naringin using 

α-L-rhamnosidase activity. It possesses anti-

inflammatory and antiviral activity against DNA/RNA 

viruses (Kaul 1985) (Fig. 1). 

 

Flavonoids deglycosylation 

Deglycosylation of flavonoids in Cleome arabica leaf 

extracts (CALE) with naringinase may be an important 

therapeutic factor in the treatment of chronic diseases 

(Bouriche and Arnhold 2010). 

 

CONCLUSIONS 

This review highlights the information of α-L-

rhamnosidases from yeast origin. In our knowledge 

concerning rhamnosidases, there is a wide gap be-

tween yeast and other microorganisms. At present 

about yeast strains, only a few reports have addressed 

the enzymatic activity, fermentative production on a 

large scale, characterization, and its subsequent appli-

cation. Also, its structural, functional, and molecular 

biology aspects have not been reported. Although sev-

eral rhamnosidase coding genes are identified from 

various bacteria, none have been used for the commer-

cial production of the enzyme. The studies in the 

above directions will be required for this purpose. Ac-

cordingly, there is a need for a process of producing 

and purifying α-L-rhamnosidase from more efficient 

new yeast strains which exhibit improved enzyme ac-

tivity, with enhanced shelf life, high thermal stability, 

more efficient in food, chemical, and pharmaceutical 

industries, and non-toxic for human consumption. 
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