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ABSTRACT 

Inhibition of the immunity checkpoint pathway of PD

-1/PD-L1 by monoclonal antibodies is effective in the 

clinical treatment of certain cancers and several anti-

PD-1 and anti-PD-L1 antibodies have been approved 

for therapeutic use. Against this background, atten-

tion has now focused on the search for small mole-

cule inhibitors of PD-1/PD-L1 protein-protein inter-

action (PPI). In this study, we have performed a vir-

tual screening for such small molecule inhibitors us-

ing PD-1 as a target. First, a 3D feature query for the 

screening was constructed making the most of the in 

silico fragment mapping method, and then the 3D 

feature query-based virtual screening of a commer-

cial compound database was carried out. The com-

pounds selected from the screening were then sub-

jected to an in vitro assay (ELISA) to test for PPI 

inhibitory ability against PD-1/PD-L1. As a result of 

the assay, one molecule was identified to be a poten-

tial seed compound for small molecule PD-1/PD-L1 

inhibitors. 

Key words: Fragment-based drug discovery, in silico 

fragment mapping, PD-1/PD-L1 inhibitor, virtual 

screening 

 

1. INTRODUCTION 

Recently our group developed a novel in silico frag-

ment mapping method [1]. Initially, a database was 

created, known as Canonical Subsite Fragment Data-

Base (CSFDB), comprising pairs of subsite-

fragments derived from X-ray crystal structures of 

known protein-ligand complexes. In addition, a frag-

ment-mapping program, Fsubsite, was developed to 

map chemical groups (fragments) onto a protein sur-

face. When we have a 3D structure of a target pro-

tein, Fsubsite searches for similar subsites on that 

surface from CSFDB. If a similar subsite is found, 

fragments combined with the subsite in CSFDB are 

placed onto the target protein surface. Thus, this 

method acts as a knowledge-based fragment mapping 

tool. In a previous study that validated that the proce-

dure was able to identify appropriate fragments 

mapped onto the target protein [1]. These findings 

suggested that the method could be utilized for the 
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construction of 3D feature queries for virtual screen-

ing. Here, we applied this method to identify small 

molecules that inhibit PD-1/PD-L1 protein-protein 

interaction. 

 PD-1 (programmed death-1) is expressed on the 

surface of activated T cells and is associated with 

apoptosis [2]. PD-L1, a ligand of PD-1, is naturally 

expressed on the surface of antigen presenting cells. 

PD-1 and PD-L1 are immune checkpoint proteins that 

act as suppressors to suppress T cell responses. The 

immune checkpoint pathway is normally suppressed 

by interaction between PD-1 and PD-L1, which main-

tains self-tolerance and limits collateral tissue damage 

[3]. However, cancer cells also express PD-L1 and 

utilize its immunosuppression function to avoid being 

killed by T cells [4-5]. When T cells are repeatedly 

exposed to tumor antigens expressing PD-L1, they 

lose their ability to attack cancer cells [6-7]. The sce-

nario outlined here is considered to be a mechanism 

related to cancer immune evasion [8-9]. 

 In recent years, anticancer treatment based around 

the inhibition of the immunity checkpoint pathway by 

targeting PD-1/PD-L1 interaction has been the focus 

of intense research. Indeed immunotherapy with 

monoclonal antibodies based on the inhibition mecha-

nism can bring about the effect of anti-tumor (i.e. 

suppression and attenuation of cancer cell prolifera-

tion/infiltration) and long-term remission in patients 

with various cancer types [10-14]. To date, the U.S. 

Food and Drug Administration (FDA) has approved 

two anti-PD-1 antibodies, nivolumab (Opdivo, Bristol

-Myers Squibb) and pembrolizumab (Keytruda, 

Merck), together with three anti-PD-L1 antibodies, 

atezolizumab (Tecentriq, Genentech/Roche), durval-

umab (Imfinzi, AstraZeneca) and avelumab 

(Bavencio, EMD Serono, Inc.). 

 By contrast, development of small molecule inhib-

itors of the PD-1/PD-L1 pathway is at a relatively 

early stage by comparison to antibody drugs. Indeed, 

there are only a few reports of such small molecule 

inhibitors [15-17]. For example, small compounds 

have been reported that stabilize dimer formation of 

PD-L1 and exhibit PD-1/PD-L1 inhibitory activity 

[18-21]. In addition, cyclic peptides have also been 

reported that bind to the PPI interface on PD-L1 to 

directly inhibit PPI of PD-1/PD-L1 interaction [22-

23]. The advantages of small molecules over antibody 

drugs are that production costs are kept low, oral ad-

ministration is possible, and immunogenicity prob-

lems can be eliminated. For these reasons, develop-

ment of small molecule PPI inhibitors of PD-1/PD-L1 

has attracted a great deal of attention. 

 In this study we aimed to identify small molecule 

PPI inhibitors of PD-1/PD-L1 using an in silico 

screening approach. The PPI interface is a wide shal-

low surface similar to the PD-1/PD-L1. Although PD

-1/PD-L1 PPI is generally acknowledged to be a 

highly difficult drug discovery target for small mole-

cule inhibitors, we made a pharmacophore hypothesis 

using an in silico fragment mapping method with PD-

1 as the target. We then performed 3D feature query-

based virtual screening for small molecule PPI inhibi-

tors of PD-1/PD-L1. 

 

 

2. MATERIALS AND METHODS 

2.1. In silico fragment mapping method 

To make a pharmacophore hypothesis for exploring 

PPI inhibitors of PD-1/PD-L1, we performed Fsubsite 

using CSFDB. The outlines of CSFDB and Fsubsite 

are described below.  

 

2.1.1. CSFDB 

It is considered that subsites on proteins to which 

similar atomic groups bind have similarities between 

them. Based on this idea, the ligands in the known 

protein-ligand X-ray crystal structure database were 

divided into fragments and amino acid residues were 

also extracted in the vicinity of those fragments as 

subsites (Figure 1). Specifically, 3D structures of pro-

tein-ligand complexes in PDBbind v.2013 core set 

were used to create a subsite-fragment database. The 

database was composed of 195 protein-ligand com-

plexes in 65 protein clusters. Ligands in the database 

were divided into fragments using Fragmenter of 

JChem 6.3.0 (ChemAxon Ltd., Budapest, Hungary, 

2014). A set of residues within 4 ¡ of each fragment 

were defined as the subsite using SYBYL-X 2.1.1 

(Certara, L. P., Princeton, NJ, USA, 2013). Finally 
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similar subsites of the subsite-fragment set were 

grouped into one representative subsite and 482 sub-

site-fragment pairs were obtained as CSFDB.  

Figure 1: Conceptual diagram illustrating CSFDB. 

 

2.1.2. Fsubsite 

The Fsubsite program superposes each subsite of 

CSFDB onto the mapping surface of a target protein 

using SUPERPOSE algorithm [24]. The Fsubsite rep-

resents functional groups of amino acids as property 

spheres of five types based on their physicochemical 

properties as follows: hydrophobicity, aromatic ring 

structure, hydrogen-bond donor, hydrogen-bond ac-

ceptor and hydrogen-bond donor/acceptor. Using the 

above rules, the surface of the target protein is 

searched in the CSFDB database. Once a similar sub-

site is found, a fragment bound to the subsite in 

CSFDB is mapped onto the target protein. This 

knowledge based in silico fragment mapping method 

and the schematic procedure for fragment mapping by 

Fsubsite is shown in Figure 2. 

Figure 2: Schematic of the procedure for in silico 
fragment mapping. 

2.2. 3D feature query construction and 3D feature 

query-based virtual screening 

The workflow of this study is shown in Figure 3. Ini-

tially, we set the mapping surface for Fsubsite using 

human apo PD-1 (PDB ID: 3RRQ). In silico fragment 

mapping using Fsubsite was then performed on the 

set mapping surface. In addition we prioritized the 

mapped fragments and constructed a 3D feature query 

based on the selected representative fragments. Using 

the query obtained in this way, candidate compounds 

were selected by performing 3D feature query-based 

virtual screening of commercially available com-

pound database. Finally, these compounds were pur-

chased and an in vitro assay was performed to check 

their ability to inhibit PPI between human PD-1/

human PD-L1. 

Figure 3: Workflow of 3D feature query construction 
and 3D feature query-based virtual screening. 
 

3. RESULTS 

3.1. In silico fragment mapping method 

3.1.1. Mapping surface setting 

Using human apo PD-1 (PDB ID: 3RRQ) as an analy-

sis target, the mapping surface was set according to 

the following procedure. When this study was initiat-

ed, the complex structure of human PD-1/human PD-

L1 (PDB ID: 4ZQK) had not been solved. Alterna-

tively, two complex structures of mouse PD-1/human 

PD-L1 (PDB ID: 3BIK, 3SBW) had been solved. 

Hence, using the mouse PD-1/human PD-L1 (PDB 

ID: 3BIK, 3SBW), amino acid residues of mouse PD-

1 within 6 ¡ from each human PD-L1 were extracted 

(i.e. amino acid residues close to the PPI interface of 

mouse PD-1). Then we compared amino acid se-
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quences of mouse and human PD-1. Based on the 

above information we set the mapping surface on 

3RRQ. The resulting mapping surface is shown in 

Figure 4 highlighted in magenta. 

Figure 4: (a) Molecular surface of hPD-1 with the 
mapping region highlighted in magenta. (b) Full 
length sequence of hPD-1 (Uniprot Q15116). Resi-
dues highlighted in magenta correspond to amino 
acids making up the mapping surface. Residues 
shown in grey correspond to amino acids that cannot 
be assigned in the crystal structure. 
 
 
3.1.2. Fragment mapping results using Fsubsite 
and prioritizing fragments on the mapping sur-
face 

Using the mapping surface, a similar subsite was 
searched from CSFDB. Where a similar subsite was 
found, a fragment bound to the subsite in that data-
base was then mapped onto the mapping surface. Us-
ing this procedure, 353 fragments were mapped onto 
the mapping surface as shown in Figure 5 (a). Next, 
for each fragment, a complex model with hPD-1 was 
constructed and then minimization was performed 
using macromodel (Schrodinger 2015-2). At this 
stage, position restraints were applied to the protein 
heavy atoms with 100 kcal/mol. The rmsd of heavy 
atoms in each fragment before and after minimization 
were also measured. Those with a value of more than 
3¡ were eliminated from the screen (i.e. fragments 
that did not fit their subsites). Furthermore, for each 
hPD-1/fragment complex model that satisfied the 
above threshold, the binding free energy was calcu-
lated using prime_mmgbsa (Schrodinger 2015-2, 
job_type=ENERGY). Finally the top 20 fragments of 
MM/GBSA values were extracted as representative 
fragments (Figure 5 (b)). 

 

Figure 5: In silico fragment mapping results. (a) 353 
fragments mapped on the mapping surface. (b) Twen-
ty selected representative fragments mapped on the 
mapping surface. 
 

3.2. 3D feature query construction and 3D feature 

query-based virtual screening 

3.2.1. 3D feature query construction 

Based on the representative fragments, a 3D feature 

query was constructed according to the following 

procedure (using MOE 2012 Pharmacophore Editor). 

Procedure 1: Representative fragments were classi-

fied into five sites based upon visual inspection of 

their arrangement on the mapping surface (Figure. 6 

(a)). Procedure 2: At each site, a hydrophobic feature 

was positioned such that all of the hydrophobic 

groups of the fragments would fit. Procedure 3: The 

polar feature corresponding to the polar functional 

group of each fragment was positioned. In this case, 

the same kind of features gathered by a sphere of ra-

dius Ò2.5 ¡ were combined into one. Procedure 4: 

An excluded volume feature was placed on heavy 

atoms of amino acid residues belonging to the map-

ping surface. As a result, the 3D feature query shown 

in Figure 6 (b) was constructed. 

Figure 6: 3D feature query construction results. (a) 
Clustered representative fragments. (b) 3D feature 
query. Green indicates hydrophobic feature (Hyd); 
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yellow indicates Hyd or aromatic ring feature (Aro); cyan indicates hydrogen bond acceptor feature (Acc); pur-
ple indicates hydrogen bond donor feature (Don); pink indicates Acc or Don. Each feature is numbered respec-
tively. Gray colored mesh shows the excluded volume feature. 
 

3.2.2. Protocol for 3D feature query-based virtual screening 

Table 1 shows the protocol for virtual screening using the constructed 3D feature query. This was a prerequisite 

to satisfy the hydrophobic feature and at least one polar feature of site 2 located at the center of five sites. An 

additional prerequisite was that the hydrophobic feature of one of the remaining four sites had to be satisfied. 

Compounds with a total score of 3 or more were considered to meet the requirements of a hit in the 3D feature 

query-based virtual screening. 

Table 1: Protocol for 3D feature query-based virtual screening. 

a Essential feature. b At least one of three features is essential. 

3.2.3. 3D feature query-based virtual screening 

In order to explore the inhibition of PPI between hPD

-1/hPD-L1 meditated by small compounds, a 3D fea-

ture query-based virtual screening procedure was car-

ried out according to the protocol shown in Figure 7. 

Firstly, up to 200 conformations per compound were 

generated using Omega (version 2.4.6 OpenEye) for 

commercial compounds (Namiki, about 5 million 

compounds). Next, a pharmacophore search (MOE 

2012) was performed using the 3D feature query for 

the obtained conformations and about 2 million com-

pounds satisfying the requirements of the protocol 

described above were extracted. Docking simulation 

was performed for the extracted compounds using 

GOLD (version 5.2 CCDC) with the amino acid resi-

dues on the mapping surface of hPD-1 as the search 

region. From the docking output, 2,397 compounds 

satisfying the requirements of the aforementioned 

protocol and Chemscore (value of Ó15) were extract-

ed. A complex model of these compounds and hPD-1 

was then constructed. After minimization using mac-

romodel (Schrodinger 2015-2) to optimize each com-

plex model, binding free energy (MM/GBSA) was 

calculated using prime_mmgbsa (Schrodinger 2015-

2, job_type=ENERGY). For 95 compounds with the 

highest binding affinity values, structural clustering 

using Cluster Molecules module (Pipeline Pilot 9.1, 

FCFP_6) was performed. Availability of the com-

pound was also verified. Finally, eight candidate 

compounds shown in Figure 8 were selected. 
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Figure 7: Overview of 3D feature query-based virtu-
al screening. 

Figure 8: 3D feature query-based virtual screening 

results. Vertical axis indicates MM/GBSA value 

(kcal/mol). Horizontal axis indicates molecular clus-

ters.  Red plots correspond to selected compounds 

used in the in vitro assay. 

 

3.3. Assay results of in vitro hPD-1/hPD-L1 PPI 

inhibition 

Selected compounds were subjected to an in vitro 

assay (ELISA) in order to evaluate their ability to 

inhibit hPD-1/hPD-L1 PPI. This assay was carried 

out at BPS Bioscience. (Catalog #72005, hPD-1

[Biotinylated]:hPD-L1 Inhibitor Screening Assay 

Kit). Each compound was made up at a concentration 

of 100 uM and biotinylated hPD-1 was mixed with 

hPD-L1 immobilized on a plate. The plate was then 

incubated for 2 hours at room temperature. After 

washing the plate, streptavidin-HRP (horseradish 

peroxidase), which is a luminescent label, was added 

and the degree of luminescence measured. The above 

test was performed twice on eight compounds. These 

experiments confirmed that compound 3 inhibits PPI 

of hPD-1/hPD-L1 at an inhibition rate of 21% (Table 

2). The following analysis was carried out to confirm 

whether the inhibitory activity is influenced by 

PAINS or compound aggregation. We applied the 

PAINS filter of Schrodinger 2018-1 CANVAS to our 

hit compound, it passed through the filter. Then, we 

performed Schrodinger 2018-1 QikProp to our hit 

compound and as the result its predicted aqueous sol-

ubility (QPlogS) is -5.54 within recommended range 

(from -6.5 to 0.5). For the reasons mentioned above, 

we think that the risk of false positive is low. 

 

Table 2: In vitro assay results of hPD-1/hPD-L1 PPI 
inhibition. 

a Values represent the mean of two experiments. 
 
3.4. Complex model of hPD-1/compound 3 and the 
interaction mode 

A complex model of hPD-1 and compound 3, which 

displayed inhibitory activity, is shown in Figure 9. 

The cationic nitrogen atom of piperazine ring of com-

pound 3 forms an ionic interaction with the E136 side 

chain of hPD-1. There is also a hydrogen bond be-

tween the carbonyl group of the amide bond of com-

pound 3 and the Y68 side chain of hPD-1. In terms of 

nonpolar interactions, there is ˊ - ́  interaction be-

tween the indole ring of compound 3 and the Y68 

side chain of hPD-1. In addition, the piperazine ring 

is surrounded by hydrophobic amino acid residues, 

such as M70, L122 and I134, which are involved in 

van der Waals interactions. 
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Figure 9: Docking model of compound 3 bound to 

hPD-1. Blue dashed lines indicate ionic interactions 

or hydrogen bonds. 

 

4. DISCUSSION 

Because the X-ray crystal structure of human PD-1/

human PD-L1 (PDB ID: 4ZQK) is now also solved, 

we are able to examine the protein-protein interaction 

site. The crystal structure of hPD-1/hPD-L1 was 

overlapped with the hPD-1/compound 3 complex 

model. Specifically, the function of Schrodinger 2015

-2 structure alignment was used and superposition of 

each hPD-1 protein backbone was performed. Based 

on the overlaid structures the interaction mode be-

tween compound 3 and hPD-L1 toward hPD-1 was 

compared as shown in Figure 10. As noted above, the 

nitrogen atom of the piperazine ring of compound 3 

forms an ionic interaction with E136 of hPD-1. Like-

wise, R113 of hPD-L1 also forms an ionic interaction 

with E136 of hPD-1. In addition, Compound 3 over-

laps with Y123 of hPD-L1. It is considered that Com-

pound 3 fills the subsite where Y123 belongs in the 

complex of hPD-1/hPD-L1. Nonetheless, hydrogen 

bond interaction and -́ˊ interaction with the hPD-1 

Y68 side chain in the complex model of hPD-1/

compound 3 were not observed in the hPD-1/hPD-L1 

crystal structure. We also compared the results of the 

3D feature query and in silico fragment mapping with 

the hPD-1/compound 3 complex model. As shown in 

Figure 11 (a), compound 3 satisfied the hydrogen 

bond donor/acceptor feature (F6), the hydrogen bond 

acceptor feature (F7) and two hydrophobic features 

(F4, F8). Thus, compound 3 appears to mimic the 

interaction between hPD-1 E136 and hPD-L1 R113. 

This interaction may contribute to the expression of 

inhibitory activity displayed by compound 3. Hence, 

the method adopted in this study is effective for de-

tecting key pharmacophores. Furthermore, from the 

comparison in silico fragment mapping result with 

the hPD-1/compound 3 complex model, two sites 

(site 1 and 4) were identified where fragments 

mapped near compound 3 (Figure 11 (b)). By opti-

mizing the interaction based on the results for com-

pound 3 so as to satisfy these site features, it may be 

possible to identify compounds with greater inhibito-

ry activity. Thus, although compound 3 has relatively 

low hPD-1/hPD-L1 inhibition activity, we believe 

that the approach used in this study can be further 

optimized to develop small molecules that are effec-

tive in PD-1/PD-L1 immune checkpoint blockade. 

Figure 10: hPD-L1 overlaid on the hPD-1/compound 

3 docking model. Blue dashed lines indicate ionic 

interactions or hydrogen bonds. 
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5. CONCLUSION 

To explore PPI inhibitors of hPD-1/hPD-L1, we con-

structed a 3D feature query using an in silico frag-

ment mapping method targeting the hPD-1 apo struc-

ture followed by 3D feature query-based virtual 

screening. As a result, a small compound that inhibits 

PPI of hPD-1/hPD-L1 was identified. Our findings 

show that the in silico fragment mapping method is 

an effective means of identifying such inhibitors. 

Furthermore, by using this method, it is possible to 

create a 3D feature query that can elucidate likely 

pharmacophores on the target structure. We antici-

pate that this novel methodology will to be utilized to 

identify hit compounds and for lead optimization. 
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