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ABSTRACT 

The terrain segmentation to zones of high to low land-

slide risk is key issue in urban and technical works 

planning in western Greece where landslide hazard is 

a key factor in loss of properties while significant 

damages to road network take place. The study area 

includes the prefecture authority of Achaia where 

landslide hazard is amplified by the lithology (flysch 

and alluvial deposits), fracture systems, down-cutting 

erosion, severe rainfalls, and earthquakes. The land-

slide database of the Institute for Geology and Mineral 

Exploration of Greece is used to derive the occurrence 

of landslides within the study area. Totally 82 sites of 

landslide occurrence were considered within the study 

area. The innovative idea in this research effort is to 

use terrain attributes: (a) That apply to each grid point 

of a digital elevation model and (b) They refer to an 

extended neighbor that is relevant to each grid point 

under consideration.  So in this approach an extended 

neighbor that varies per grid point per terrain attribute 

as well as shape terrain attributes are used to charac-

terize the geomorphometry of the study area. Under a 

trial and error procedure 13 terrain attributes (Channel 

Network Distance,  Profile Curvature, Length Slope 

Factor, Valley Depth, Downslope Curvature, Conver-

gence Index,  Flow Path Length,  Plan Curvature, 

Positive Openness, Topo Wetness Index, Total Catch-

ment Area, Mass Balance Index, Upslope Curvature) 

presenting the minimum correlation between them 

were selected. K-means clustering defined 8 terrain 

classes. Each terrain class is represented by the cen-
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troid vector and its spatial extent. The percent land-

slide occurrence within the percent area occupied by 

each terrain class, is used to define a new landslide 

susceptibility index that is useful for hazard/risk as-

sessment, land use and land cover studies as well as 

rural and urban planning within the study area. 

Keywords: landslides, digital elevation model, geo-

morphometrical characterization, urban planning. 

 

INTRODUCTION 

Landslides are destructive geological processes which 

cause enormous damage to human settlements, roads 

as well as to the infrastructure related to the manage-

ment and exploitation of natural resources (Pandey 

1987). Landslides are the result of complex interaction 

among geologic, geomorphologic and meteorologic 

factors (Gao et al. 2015).  Spatial data related to these 

factors can be derived by remote sensing techniques 

and ground based information while historical infor-

mation captures the frequency of landslides events 

(Sangar and Kanungo 2004). For non-damaging natu-

ral terrain landslides, the location of their occurrence 

must be close to human activities, to catch the atten-

tion otherwise will not be reported (Dai and Lee, 

2002). This causes a major drawback in the estimation 

of landslide risk in natural terrain (areas covered by 

natural vegetation-forests, non cultivated, non urban, 

non rural lands) on the basis of historic records (Gao 

et al. 2015). 

 Nowadays, remote sensing data and image pro-

cessing were used to the mapping of landslides and the 

determination of temporal associations between land-

sliding events and surface conditions (Sangar and 

Kanungo 2004) while  assessment of landslide suscep-

tibility has been attempted in a wide variety of geo-

graphic information systems using diverse approaches 

(Costanzo et al. 2014). These methods are based on 

the integration of combined effect of the spatial fac-

tors identified to be important in assessing slope insta-

bility. In these approaches, the spatial factors where 

integrated on an artificial regular-grid terrain-partition 

scheme (Shirzadi et al.  2017) that was not related to 

the geomorphologic entities that occur in the natural 

terrain. 

At the same time various digital image processing and 

G.I.S. techniques are being developed in order to auto-

mate the qualitative interpretation of geomorphologic 

features (Miliaresis et al. 2005). These methods allow 

terrain segmentation to elementary geomorphic ob-

jects and subsequent parametrically representation of 

objects on the basis their spatial 3-dimensional ar-

rangement.  The use of these techniques is stimulated 

by the availability of the global coverage SRTM mod-

erate resolution elevation data (Miliaresis and Para-

schou 2005) that is freely available through the inter-

net (SRTM DEM, 2017). 

 In the previous approaches, terrain segmentation 

was based on a regular grid, the most critical effect 

being the grid resolution (Dhakal et al. 2000). For ex-

ample, a regular grid partition framework could be 

composed of cells with size 20 times the DEM  spac-

ing. Thus each cell would be composed from 400 

DEM points. Then, raster maps are created for each 

spatial (hydrology, vegetation, climate, geology, geo-

morphology, etc.) factor (Chau et al. 2004). In each 

cell, a value quantifies the spatial factor magnitude. 

Thus, a major drawback is involved in the subsequent 

raster maps combination since values are related not to 

geomorphologic entities but to an artificial regular 

grid partition scheme. 

 The innovative idea in this research effort is to use 

terrain attributes: (a) that apply to each grid point of a 

digital elevation model and (b) they refer to an extend-

ed neighbour that is relevant to each grid point under 

consideration.  So in this approach an extended neigh-

bour that varies per grid point per terrain attribute is 

used to characterize the geomorphometry (Pike et al 

2008) of the study area. In the proposed approach the 

landslide occurrence will be related to the intensity of 

flow, transportation and erosion phenomena, as well 

as terrain shape, derived from an extended neighbour 

in relation to the static pixel based approaches. 

 

MATERIALS AND METHODS 

First the study area and the data are introduced. Then 

landslide inventory analysis, knowledge conceptual-

ization and statistical analysis identified the geomor-

phometric attributes. Then a methodology is devel-

oped that segments the terrain to terrain classes will 
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landslide occurence is used to determine the landslide 

risk per terrain class within the study area. 

 

STUDY AREA 

The study area is enclosed by the following rectilinear 

co-ordinates minimum X=266,088 m, maximum 

X=358,488 m, minimum Y=4,182,424 m and maxi-

mum Y=4,248,199 m, based on the Greek Geodetic 

Reference System of 1987 (Mugnier 2002). It coin-

cides with Achaia prefecture in the  Western Greece 

(Figure 1). 

 

Figure 1. The study area (black polygon the coincides 

to Achaia prefecture) within a latitude, longitude (in 

degrees)  map of Greece that depicts the borderlines of 

the prefecture authorities. 

 

The geological setting and tectonics of western Greece 

is summarized by Miliaresis et al. (2005) as follows. 

The formations consisting the geological basement are 

limestone, dolomites and dolomitic limestones, schists 

and cherts, and flysch. Intense and multifarious frac-

turing is evident and calcareous rocks are also karstic. 

Flysch mainly consists of marls, sandstones, siltstones. 

The post-alpine sediments are represented by the Neo-

gene and Quaternary deposits. Synclinal and anticlinal 

folds of extensive length and with an axis directed N-S 

are intersected by two main fault systems in the NW-

SE and NE-SW directions. In southern part the faults 

are in N-S and E-W directions while thrusts are gener-

ally directed N-S. The tectonic picture is completed by 

the post-alpine gravity faults. 

 

LANDSLIDE INVENTORY 

The landslides in Western and Central Greece occur 

basically in the flysch, the neogene, the upthrusts for-

mations and the loose quaternary deposits (Miliaresis 

et al 2005). The landslide data of  the geo-database of 

ground failures of Institute for Geology and Mineral 

Exploration (IGME) of Greece (NGGF 2018; Poyiadji 

2007) was used for risk analysis. The spatial distribu-

tion of landslides within the study area is depicted in 

Figure 2.  Landslides were reported in the mountain-

ous terrain, along settlements, and parallel to the coast 

along the Athens-Patras national highway (Miliaresis 

et al 2005). 

Figure 2. The landslide occurrence within the study 

area (projected the to  Greek Geodetic Reference sys-

tem of 1987). 

 

It should be noted that the most landslides records are 

either failures of man-made or natural terrain land-

slides that lead to death, injury, or interruption of hu-

man activities. For non-damaging natural terrain land-

slides, the location of their occurrence must be close to 

human activities, to catch the attention otherwise will 

not be reported (Miliaresis et al. 2005). Although it is 

very unlikely that the data compiled are complete, the 

data set is considered reliable and constitutes a good 

basis for landslide risk analysis. 
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ELEVATION DATA 

 NASA collected elevation data for much of the world 

using a radar instrument aboard the space shuttle that 

orbited the earth from the 11th through the 22nd of 

February 2000 (Farr and Kobrick 2000). The space 

shuttle topography mission (SRTM) digital elevation 

model (DEM) is projected to a latitude/longitude grid 

referenced to WGS-84 (horizontal datum) while eleva-

tions are referenced to EGM96 geoid (vertical datum). 

The DEM data is available to 1, 3 and 30 arc seconds 

spatial resolutions.  

 In this study the 3 arc seconds  SRTM DEM was 

used with spacing approximately 92.6 m at the equator 

(Miliaresis and Paraschou 2005). The DEM data was 

reprojected to the Greek Geodetic Reference system of 

1987 (Mugnier 2002) and resampled by nearest neigh-

bor at 100 m grid spacing. It contains 901 columns 

and 626 rows. The elevation is within the interval 0 to 

2,096 m ( Figure 3). The accuracy of the DEM data 

together with the data spacing adequately supports 

computer applications that analyze hypsographic fea-

tures to a level of detail similar to manual interpreta-

tions of information as printed at map scales not larger 

than 1:50,000 (Miliaresis and Paraschou 2005).   

 

TERRAIN ATTRIBUTES 

In the current approach an extended neighbor that var-

ies per grid point per terrain attribute as well as shape 

terrain attributes are used to characterize the geomor-

phometry of the study area. So the landslide occur-

rence will be related to the intensity of flow, transpor-

tation and erosion phenomena, as well as terrain shape 

(Pike at al 2008), derived from an extended neighbour 

(that is relevant to each grid point under considera-

tion) in contrast to the static pixel based approaches 

that considers the geomorphometric properties within 

a fixed size kernel. Various terrain attributes are test-

ed. The selection criterion considers the terrain attrib-

utes with minimum absolute correlation (Landam and 

Everitt 2004) in between them (Table 1). 

Table 1. Cross correlation of terrain attributes. 

Cross Correlation CC CND ProfC Lsf VD DC CI FPL PlanC PO TWI TCA MBI UC 

Channel network 
distance 

CND 1 0,42 0,36 -0,28 0,13 0,26 0,48 0,30 -0,09 -0,46 -0,10 0,22 0,44 

Profile Curvature ProfC 0,42 1 -0,10 -0,45 0,50 0,37 0,17 0,51 0,39 -0,29 -0,12 0,37 0,55 

LS Factor Lsf 0,36 -0,10 1 0,21 
-
0,48 

-0,08 0,23 -0,12 -0,49 -0,34 0,01 -0,19 0,14 

ValleyDepth VD -0,28 -0,45 0,21 1 
-
0,33 

-0,37 -0,07 -0,47 -0,39 0,43 0,12 -0,30 
-
0,44 

Downslope 
Curvature 

DC 0,13 0,50 -0,48 -0,33 1 0,42 0,02 0,58 0,69 -0,22 -0,14 0,46 0,52 

Convergence 
Index 

CI 0,26 0,37 -0,08 -0,37 0,42 1 0,12 0,68 0,28 -0,47 -0,22 0,34 0,44 

Flow Path  Length FPL 0,48 0,17 0,23 -0,07 0,02 0,12 1 0,07 -0,06 -0,27 -0,09 0,06 0,17 

Plan curvature PlanC 0,30 0,51 -0,12 -0,47 0,58 0,68 0,07 1 0,34 -0,41 -0,11 0,45 0,61 

Positive Openness PO -0,09 0,39 -0,49 -0,39 0,69 0,28 -0,06 0,34 1 0,12 -0,07 0,44 0,14 

Topo Wetness 
Index 

TWI -0,46 -0,29 -0,34 0,43 
-
0,22 

-0,47 -0,27 -0,41 0,12 1 0,40 -0,41 
-
0,51 

Total catchment 
area 

TCA -0,10 -0,12 0,01 0,12 
-
0,14 

-0,22 -0,09 -0,11 -0,07 0,40 1 -0,11 
-
0,11 

Mass Balance 
Index 

MBI 0,22 0,37 -0,19 -0,30 0,46 0,34 0,06 0,45 0,44 -0,41 -0,11 1 0,76 

Upslope Curvature UC 0,44 0,55 0,14 -0,44 0,52 0,44 0,17 0,61 0,14 -0,51 -0,11 0,76 1 
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Figure 3. The DEM of the study area (the darker a 

pixel, the greater it’s elevation).  

 

The following 13 terrain attributes were selected under 

a trial and error procedure: 

1.Channel Network Distance (CND): represents the 

stratigraphic relationship or the cutoff process, which 

creates instabilities in the base of the slopes (Märker et 

al 2016). 

2.Profile Curvature Index (ProfC): a measure of the 

vertical curvature of the earth's surface. It is the curva-

ture of the line formed by the intersection of the verti-

cal plane along the steeper slope with the surface of 

the earth. Negative values indicate convex surfaces 

and positive values show hollow surfaces (Shary 

1995). 

3.Length Slope Factor (LsF): a combination of slope 

length and width is a useful feature for predicting cor-

rosion potential (Boehner et al. 2006). 

4.Valley Depth Index (VD) captures the altitude differ-

ence in a 5x5 neighborhood (Qin et al 2009). 

5.Downslope Curvature Index (DC) affects the water 

flow rate under a slope and therefore affects corrosion 

and soil and water movement (Aspinall et al 2015). 

6.Convergence Index (CI) determines the number of 

droplets passing through a point, when the flow is sim-

ulated in a 3x3 cell (Pike et al 2008). 

7.Flow Path Length (FPL) the distance from the origin 

of the horizontal flow to the point where it enters a 

main concentrated flow area, such as a river, a stream 

or a diversion (Renard et al 1997). 

8.Plan Curvature (PlanC) by definition is curvature 

on a horizontal plane. Positive curvature values indi-

cate a convex contour within the grid cell and the neg-

ative curvature values indicate a hollow outline within 

the grid cell. The curvature index is important for the 

study and understanding of variants in natural and arti-

ficial terrain, and is used in many areas, including the 

mapping of river basins (Zevenbergen et al 1987). 

9.Positive Openness (PO): an angular measure of the 

relationship between the surface and the free surface at 

the maximum horizontal distance. It resembles the 

digital images of shaded relief or angle of inclination, 

but emphasizes the dominant superficial cavities and 

curvatures The Positive Openness Index expresses the 

aperture above the surface, while its positive values 

are high for convex forms (Yokoyama et al 2002). 

10.Topographic Wetness Index (TWI): a steady state 

indicator capable of predicting areas sensitive to satu-

rated land surfaces and areas capable of producing 

land flow (Ballerine 2017). 

11.Total Catchment Area (TCA): the upslope area ex-

tent contributing with flow to a certain grid point of 

the DEM (Miliaresis 2006). 

12.Mass Balance Index (MBI): a geomorphometric 

variable used to determine an area. The negative val-

ues of the Mass Balance Index represent net deposited 

areas such as cavities and valleys, while the positive 

values of the Mass Balance Index represent erosion 

areas such as convex hill slopes. Mass Balance Index 

values close to 0 refer to areas with equilibrium be-

tween corrosion and deposition such as plains (Möller 

et al 2008). 

13.Upslope Curvature (UC): the interval from the 

mean weighted local curvature of the interference re-

gion cell's top, based on the multiple flow direction 

(Freeman 1991). 

 

TERRAIN SEGMENTATION 

K-means cluster analysis (Mather and Koch 2011) was 

used to partition separately the multi-dimensional (13-

dimensions) terrain representation of the study area 
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into K exclusive clusters. The method begins by ini-

tializing cluster centroids, then assigns each pixel to 

the cluster whose centroid is nearest, updates the clus-

ter centroids, then repeats the process until the stop-

ping criteria are satisfied (Mather and Koch 2011). 

The analysis uses Euclidian distance for calculating 

the distances between grid points and cluster centroids 

(Landam and Everitt 2004). The underlying idea of 

cluster analysis is that the cluster centroids represent 

the mean expression of the derived clusters. So clus-

tering of the multi-dimensional data sets is expected to 

define groups of pixels with a rather common centroid 

curve that expresses their average terrain signature 

within each cluster (Miliaresis 2006). Finally the clus-

ters were interpreted according to their centroid and 

their spatial arrangement (Landam and Everitt 2004). 

The relative scales of the terrain attributes are quite 

different and a treatment should be taken since cluster 

analysis depend on the concept of measuring the dis-

tance between the different grid cells. If one of the 

variables is measured on a much larger scale than the 

other variables, then will be overly influenced by that 

variable (Mather and Koch 2011). The traditional way 

of standardizing variables is to subtract their mean, 

and divide by their standard deviation (Landam and 

Everitt 2004). Variables standardized this way are 

sometimes referred to as z-scores, and always have a 

mean of zero and variance of one. 

     In the current implementation of K-means cluster-

ing,  8 terrain classes were defined from the standard-

ized variables.  The centroids (mean terrain difference 

among the 8 terrain clusters), are presented in Table 2 

while the spatial extent of the 8 clusters is depicted in 

Figure 4. 

Figure 4. The spatial extent f the 8 clusters (terrain 

classes).  

Table 2.  The cluster centroids and occurrence (percent spatial extent) for the 8 cluster . Note that while in clus-

tering the data was normalized per terrain attribute, in the current centroid presentation the actual  value range 

per terrain attribute is presented for it’s 8 centroid co-ordinates  

Terrain at-
tributes 

Clusters 

1 2 3 4 5 6 7 8 

CND 2.13 3.11 2.76 2.78 1.55 2.16 3.20 8.14 

ProfC 210.0 491.5 454.2 14.9 34.8 143.3 177.9 0.1 

Lsf 0.000299 0.001444 0.000353 -0.000311 -0.000108 -0.000634 -0.001104 -0.001255 

VD 4.3 5.8 8.8 1.4 1.2 6.6 10.8 5.8 

DC 61.1 39.4 107.0 277.2 108.1 174.6 284.6 245.3 

CI -0.0247 0.2249 -0.2934 -0.1677 -0.0957 -0.3339 -0.7854 -0.6747 

FPL 6.0 13.2 0.8 -11.0 0.6 -1.9 -9.4 -24.1 

PlanC 2090 3247 4369 1081 991 1871 2450 293 

PO 0.000579 0.001709 0.000231 -0.000311 -0.000009 -0.000263 -0.001328 -0.000820 

TWI 1.457 1.469 1.375 1.464 1.506 1.370 1.275 1.353 

TCA 6.317 5.503 6.609 13.195 9.064 7.571 8.941 18.314 

MBI 27624 17317 62207 5596135 132949 137054 1866839 144024360 

UC 0.1247 0.2666 -0.0415 -0.0499 -0.0086 -0.0632 -0.2140 -0.1850 

Occurrence 18.47 8.01 11.94 9.31 22.65 20.37 8.87 0.38 
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LANDSLIDE RISK ASSESSMENT 

The landslide occurrence per terrain class is computed 

in Figure 5 and in Table 3. According to Table 3 and 

Figure 5, landslides occur only in 3 terrain classes that 

corresponds to class 1, class 6 and class 7. The percent 

of landslide points (Table 3) ithin a terrain class divid-

ed by the occurrence of the terrain class (Table 2 )  is 

used to define the Landslide Risk Index (LRI)  in Ta-

ble 3. 

 

 

 

 

Figure 5. The landslides labeled by the terrain class 

they belong to.  

 

Table 3. Landslide occurrence per terrain class. 

Terrain 
class 

Number of 
points 

Percent of points % 
Terrain class 
occurrence 

Landslide risk index 
(LRI) 

1 6 7,3 18.5 0,4 

6 68 82,9 20.4 4,1 

7 8 9,8 8.9 1,1 

Total 82 100 47.9   

Under this definition, terrain class 6 presents LRI that is almost 4 times greater than the LRI of terrain class 7 

while terrain class 7 presents  LRI that is almost 3 times greater than the LRI of terrain class 1. These three ter-

rain classes are represented with standardized (in the interval 0 to 1) centroids co-ordinates in Figure 6.  

Figure 6. The standardized cluster centroids (in the interval 0 to 1) for the terrain classes 1, 6 and 7.  Note than 

only Lsf, PO, UC, CI, CND, TCA, VD, DC, PlanC, ProfC, FPL, TWI  were used in this  presentation.   
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RESULTS AND DISCUSSION 

Profile and planar curvature (shape indices) as well as 

valley depth that is correlated to terraib variability 

within a kernel) are fixed kernel geomorphometric 

parameters while the rest 10 are extended  neighbor-

hood geomorphometric parameters. These parameters 

present a minimum correlation in between them and 

that is why they were selected among others under a 

trial and error procedure. 

 The compiled landslide data is very unlikely to be 

complete, since most landslides records are either fail-

ures of man-made or natural terrain landslides that 

lead to death, injury, or interruption of human activi-

ties.  So for non-damaging natural terrain landslides, 

the location of their occurrence must be close to hu-

man activities, to catch the attention otherwise will not 

be reported. On the other hand, the new landslide rec-

ords might be easily incorporated to the analysis since 

only the landslide occurrence per terrain class might 

be modified and not the terrain class occurrence with-

in the study area. 

 In the present study the 3 arc seconds SRTM DEM 

data (at 100 m spatial resolution approximately) are 

used while 1 are second SRTM elevation data ((at 30 

m spatial resolution approximately) is also available 

for the study area. In a future research effort, the high-

er spatial resolution SRTM elevation data will be used 

in an attempt to recompute the geomorphometric data 

and segment terrain classes at finer resolution/scale. 

 A fundamental assumption is that each terrain class 

is represented by the centroid vector and it’s spatial 

extent. So the landslide risk is considered constant in 

each terrain class. This is an abstraction, that is relia-

ble for the moderate resolution DEM data (at 100 m 

spacing) used in this research effort. In future research 

efforts, variable LRI will be computed within each 

terrain class on the basis of higher spatial resolution 

DEM data. 

 Figure 6 indicates the variability of the standard-

ized centroid co-ordinates for the 3 terrain classes pre-

senting LRI > 0. Figure 6 reveals differences (for ex-

ample the variability in VD, TEI, etc. etc.) in the spa-

tial position of the three terrain classes. For example 

according to Figure 6, a terrain class should be closer 

to the river network that the others.  The spatial ar-

rangement of the 3 classes is verified more clearly in 

Figure 7 and Figure 8. 

Figure 7. The terrain classes 1 (depicted in yellow), 6 

(depicted in blue)  and 7 (depicted in red)  as well as 

the landslide points.  

Figure 8. The river network and the terrain class 7.  

 

CONCLUSION 

The terrain segmentation on the basis of extended 

neighborhood and shape terrain attributes seems to be 

particularly useful for defining terrain classes that can 

be used in order to define landslide risk from point 

landslide data from a moderate resolution (100 m) 

DEM. 

 The percent landslide occurrence within the per-

cent area occupied by each terrain class, is used to 

define a new landslide risk index (LRI) that is useful 

for hazard/risk assessment, landuse and landcover 

studies as well as rural and urban planning within the 

study area. 
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