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ABSTRACT 
When the central nervous system loses its nerve cell 
functions over a period of time, symptoms and prob-
lems arise leading to the progression of neurodegenera-
tive diseases. Statistical data shows that more than 5 
million people worldwide are affected by Parkinson’s 
disease [PD], and the data is undesirably rising every 
year. In PD patients, structural and functional changes 
are shown in the brain, especially the substantia nigra 
region. The underlying cause that correspond to the 
development of PD remains unclear. Nevertheless, α-
synuclein aggregation has been reported to be neuropa-
thologically linked to PD. On the other hand, several 
evidences successfully demonstrate the importance and 
significance of mitochondrial dysfunction in PD mod-
els. Treatments available for PD are limited. Recently, 
as shown in some studies, the antioxidant properties 
and hypnotic benefits of melatonin bring remarkable 
contribution to the PD patients. Hence, in this article, 
we focus on the effect of melatonin associating with 
the pathology and physiology of PD. 
 
Keywords: Antioxidant; Melatonin; Parkinson’s dis-
ease; Pathophysiology  
 

INTRODUCTION 
 Parkinson’s disease (PD) is associated with irre-
versible neuronal dysfunction, specifically the progres-
sive depletion of dopaminergic neurons in the substan-
tia nigra pars compacta, which play a role in dopamine 
neurotransmission [1-2]. Many studies proved that the 
dopaminergic cell loss in substantia nigra contributes 
significant effects to PD patients. Other related studies 
proposed some possible underlying causes of PD, for 
example, mitochondrial dysfunction, activation of glial 
cells due to oxidative stress in micro-environment, as 
well as gene mutations [3-6]. In PD models, oxidative 
stress built in dopaminergic neuronal cells is suggested 
to be the major cause of neuronal cell death [7]. Mono-
amine oxidase initiates the production of reactive oxy-
gen species (ROS) by catalyzing dopamine oxidation, 
which can eventually lead to the pathogenesis of PD 
[8]. On the other hand, α-synuclein (α-syn) is the first 
and most important gene found to be closely related to 
PD. It is responsible for the formation of Lewy bodies 
and variation at its locus is the major genetic risk factor 
for sporadic PD [9-10].  
 The main clinical manifestations of PD are akine-
sia, rigidity and tremor at rest. There are also a wide 
spectrum of cognitive symptoms [11-13]. Most fre-
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quently, patients develop PD symptoms gradually over 
a period of years. Patients with PD often show notable 
body movements and features such as tremor in hand 
or foot, limbs rigidity, postural instability, insomnia, 
rapid eye movement sleep behavior disorder and motor 
impairment [14-17]. There is currently no cure for PD. 
The treatments available are mostly used to improve 
symptoms of the disease [18]. Hence, new or alterna-
tive therapies for PD are in demand.      
 Melatonin (N-acetyl-5-methoxytryptamine) is a 
tryptophan which is secreted by pineal gland in the 
brain. It is a major product during dark phase [19-21]. 
Melatonin also plays an autocrine or paracrine role due 
to its secretion in various cells and organs such as bone 
marrow, thymus, skin and eyes [22]. Circulating mela-
tonin binds to albumin and metabolized by liver en-
zymes, cytochrome P450 monooxygenases A2 and 1A, 
to produce 6-hydroxymelatonin. A series of reactions 
are continued with the conjugation with sulphuric acid 
to yield 6-sulfatoxymelatonin, which is a major melato-
nin metabolite found in urine [23]. Melatonin carries 
out many functions in the body including sleep regula-
tion, seasonal reproduction, control of circadian 
rhythms and free radical scavenging [24-25]. Melato-
nin shows its sleep-promoting effect in many studies. 
However, the results are debatable due to the short half
-life of melatonin and inadequate dosing while con-
ducting the study [26-27].  
Melatonin is well characterized to be highly related to 
PD diagnosis. Hence, it could be one of the great in-
dexes to be measured for the severity of PD. Study 
found that levels of melatonin in PD patients are lesser 
as compared with controls [28-29]. Melatonin recep-
tors, MT1 and MT2 are expressed in several parts of 
the central nervous system. A previous study reported 
that the receptors are down-regulated in PD patients, 
hence suggesting the possible involvement of melato-
nin in the disease [30]. Furthermore, melatonin shows 
some relationships with dopamine such as its turnover, 
content modulation and receptor activation [28]. Con-
sidering the important involvement of melatonin in PD, 
we have thus reviewed the roles of melatonin in the 
pathophysiology of PD in this article. 
 
MELATONIN ACTS AS ANTIOXIDANT IN PD 
Due to its well-known neuroprotective and antioxida-
tive stress properties, melatonin’s actions on PD are 
conducted in many in vivo and in vitro studies [31-32]. 
Melatonin is well-known with its antioxidant properties 
that block prooxidant enzymes’ expression while pro-
moting antioxidant enzymes genes expression [33]. 
Previous study proved that melatonin has several desir-
able characteristics which make it a good antioxidant. 
It binds to iron and attenuates Fenton reaction as well 
as hydroxyl radical generation. The highly reactive hy-
droxyl radical is produced via the Fenton reaction in 
the presence of excess iron [34-35]. 
 Melatonin has been shown to prevent oxidative 

stress in the early stages of neurodegenerative process. 
Brain contains high amount of polyunsaturated fatty 
acids and requires high energy input, which makes it 
susceptible to free radical-mediated insults [36]. To 
evaluate the potential anti-PD effects of melatonin, 6-
hydroxydopamine (6-OHDA) was used to destroy the 
dopaminergic neurons in the study models. 6-OHDA is 
known to cause increase in ROS production and mito-
chondrial dysfunction. The ability of melatonin in ele-
vating several antioxidant enzymes is discovered in the 
studies [37]. Besides, melatonin is proved to be able to 
modulate astrocyte activity by regulating antioxidative 
defenses [38]. 
 
MELATONIN RESCUES MITOCHONDRIAL 
DYSFUNCTION IN PD 
 The major function of mitochondria is to produce 
energy by generating adenosine triphosphate (ATP) 
through the electron transport chain (ETC). ETC, 
which is found in the inner mitochondrial membrane, 
comprises oxido-reductant protein complexes such as 
Complex I, II, III and IV. It mediates signals among 
cells to generate energy from atmospheric oxygen [39]. 
Under normal circumstances, incomplete oxygen re-
duction produces less than 2% of electrons. The leak-
age of electrons causes the superoxide radicals to be 
rapidly converted into hydrogen peroxide (H2O2). Sub-
sequently, mitochondria become a site where it is re-
sponsible for the overproduction of ROS, therefore the 
main source of free radicals in cells. The elevation in 
hydrogen ion-electrochemical gradient is another result 
obtained from the transferring of metabolic substrates 
via ETC to molecular oxygen [40]. Evidences of Com-
plex I and glutathione (GSH) deficiencies in substantia 
nigra are reported in most of the PD patients, hence 
supported the relationship between PD and mitochon-
drial dysfunction. Due to the lack of catalase in mito-
chondria, neuronal cells have to rely on GSH to act as 
antioxidant and protect against H-2O2-induced apopto-
sis. In previous research, melatonin showed to restore 
GSH in the isolated GSH-depleted brain mitochondria, 
thus increase the glutathione peroxidase and glutathi-
one reductase activities [41].  
  Recent in vivo studies proved that melatonin when 
added to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP)-induced zebrafish embryo, successfully re-
stored brain function and prevented parkinsonian phe-
notypes. MPTP injection is used to mimic the charac-
teristics of PD patients. In this study model, mitochon-
drial dysfunction is noted when mitochondrial Com-
plex I is inhibited. Incredibly, melatonin helped in mi-
tochondrial homeostasis and integrity, thus protecting 
mitochondria from being destroyed by the deleterious 
effects of MPTP [42]. Additionally, melatonin has been 
shown to act as a protective agent against excitotoxici-
ty by reducing the autoxidation of dopamine in MPTP-
induced mice [43]. Apart from that, melatonin-treated 
mice were reported to have normalized Complex I ac-
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tivity and oxidative status in mitochondria of substantia 
nigra and striatum regions [44]. 
  Melatonin is particularly picked up by mitochon-
dria. It prevents the inhibition of mitochondrial respira-
tion by limiting the interaction of 1-methyl-4-
phenylpyridinium with Complex I [44]. The deficiency 
in Complex I activity is believed to be associated with 
reduction in GSH levels and induction of oxidative 
stress. Furthermore, ROS production and lipid perox-
ides are demonstrated to cause mitochondrial DNA 
(mtDNA) damage [45]. In this case, melatonin was 
found to provide protection to mitochondrial respirato-
ry chain and mtDNA from oxidative damage, leading 
to an effective increase in Complex I and Complex IV 
expressions and activities. In mitochondrial dysfunc-
tion, inducible nitric oxide synthase (iNOS) activity 
and nitric oxide (NO) synthesis are enhanced, therefore 
inhibit the ETC and mitochondrial permeability transi-
tion [46]. However, melatonin with its powerful antiox-
idative properties, is proved to possibly inhibit iNOS 
and terminate the NO production. Moreover, by reduc-
ing mitochondrial oxygen consumption and its mem-
brane potential, melatonin effectively increases mito-
chondrial ETC efficiency that in turn reduces electron 
leakage such as superoxide and H-2O2 production [47].  
 Aging process also evidently reduced the mitochon-
drial capacity and neuronal functions. Here, melatonin 
is suggested as a therapeutic agent to delay the aging 
process in normal brain and to treat neurodegenerative 
disorders [48]. Melatonin was found to inhibit mito-
chondrial cell death pathways, hence promoting neu-
ronal cell survival [49]. 
 
MELATONIN REGULATES CIRCADIAN 
RHYTHM IN PD    
 Another important topic related to the pathophysiol-
ogy of PD is the adjustment of patient’s circadian 
rhythm. Circadian rhythm or wake-promoting system, 
is one of the central factors controling the physiology 
and behaviors of PD patients [50]. In PD patients, non-
motor symptoms such as insomnia, excessive morning 
sleepiness, rapid-eye-movement sleep behavior disor-
der and obstructive sleep apnea are very frequently re-
ported upon examination [11, 13]. Depression in fact is 
associated with a disturbed circadian rhythm [51-52].  
 MT1 and MT2 are deprived in PD, and this explains 
on the wakefulness that is experienced by most of the 
PD patients [30]. Melatonin plays a role in regulating 
sleep pattern specifically through the inhibition of cir-
cadian signal at the suprachiasmatic nucleus via the 
MT1 and MT2 receptors [30]. Additional dose of mela-
tonin to ongoing levodopa treatment before bedtime 
resulted in longer hours of sleep and higher sleep effi-
ciency as compared with untreated group in animal 
models of PD [53]. In a clinical trial, PD patients that 
were given melatonin showed a minimal improvement 
in sleep disorders, with no adverse effect resulted from 
the treatment [54]. Other studies also indicated that 
melatonin administration resulted in restoration in daily 

rhythm of various clock genes expression, hence reset-
ting the disturbed circadian pacemaker [55]. Morover, 
agomelatine, an antidepressant that produces melaton-
ergic effects shows promising results in treating a vari-
ety of sleep disorders in PD [56].  
 Despite all the evidences presented, there is still 
lack of sufficient data to fully support the use of mela-
tonin in managing PD as the known treatment benefits 
are limited [57].   
 
OTHER EFFECTS OF MELATONIN ON PD 
Melatonin activates the cells through G-protein coupled 
membrane receptors, mainly the MT1 and MT2, and 
nuclear receptors like retinoid orphan receptors and 
retinoid Z receptor (RZR) . MT1 and MT2 receptors 
have seven membrane domains which are categorized 
into the superfamily of G-protein coupled receptors. 
MT2 receptor has lower affinity (Kd=160pmol/l) for 
125I-melatonin as compared with the human MT1 re-
ceptor (Kd=20-40pmol/l) [59]. Studies on PD models 
reported that RZRα & RZRβ receptors, which can be 
found in the nervous system, lymphocytes and mono-
cytes, have great association with cell differentiation 
and inflammatory reactions [58]. Melatonin exhibits 
potent anti-inflammatory properties such as inhibiting 
TNF-α, which is responsible for proinflammatory cyto-
kines synthesis and suppression of iNOS gene expres-
sion [59].  
Melatonin shows its antiapoptotic effects in many PD 
models. It protects neuronal cells from damages in-
duced by neurotoxic substances such as MPTP, 6-
OHDA and rotenone [60-62]. In vivo study concluded 
that melatonin possesses an unprecedented ability to 
prevent neurons in the midbrain from apoptotic cell 
death [60]. Study also showed that melatonin effective-
ly attenuates kainic acid-induced neurotoxicity and ar-
senite-induced apoptosis by inhibiting the aggregation 
of α-syn [63-64]. Other than that, melatonin is reported 
to block and suppress the expression of α-syn fibril for-
mation, which contribute greatly to the management of 
PD [63-64]. 
  
CONCLUSION 
 Effects of melatonin in the pathophysiology of PD 
were investigated in many studies to understand its 
roles and mechanisms. From the in vivo and in vitro 
studies, melatonin showed to prevent oxidative stress-
induced mitochondrial dysfunction and help in manag-
ing sleep disorders in PD. However, melatonin has 
short half-life, and late melatonin administration due to 
the delay in PD diagnosis make the treatment benefits 
debatable. Furthermore, PD is characterized by irre-
versible dopaminergic neurons degeneration, and there 
is no evidence proving that melatonin is able to regen-
erate damaged neurons in the nigostriatal pathway. 
Thus, further related studies are crucial to fully under-
stand the role of melatonin in the pathophysiology of 
PD.  
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