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ABSTRACT 
Early accurate detection of pancreatic cancer is still a challenge for current medicine. 

Compared to conventional anatomical imaging techniques, PET can provide infor-

mation on tumor function, and PET/CT is increasingly used in detecting and staging of 

cancer as single "one stop shop" method. In this review, we summarize current PET 

molecular imaging tracers or probes for pancreatic cancer detection, and a perspective 

of the future trend of pancreatic cancer target-specific probes in the clinic is also provid-

ed. 

 

Keywords: Pancreatic cancer, Pancreatic ductal adenocarcinoma, positron emission to-

mography (PET) 

Copy rights: © This is an Open access article distributed 
under the terms of International License.                                                

PET Imaging in Pancreatic Cancer 

SDRP  Journal of Food Science & Technology    (ISSN: 2472-6419) 

 DOI: 10.25177/JFST.4.3.RA.493 
Review 

Xiaohui Wang1,2, Yumin Li2,3 



Yumin Li et al. 

——————————————————————————————————————————————————–

WWW.SIFTDESK.ORG 660 Vol-4 Issue-3 

SIFT DESK  

INTRODUCTION 

Pancreatic ductal adenocarcinoma (PDAC) is the 

most common pancreatic cancer, which is currently 

considered to be the third leading cause of cancer-

related deaths in the United States[1]. Only 10 to 20% 

of patients with pancreatic cancer are candidates for 

resection and hence have any potential for cure, and 

the majority of patients present in late stages [2]. 

Conventional diagnostic imaging, such as ultrasonog-

raphy and endoscopic ultrasound (EUS),  Computed 

tomography (CT), MRI (Magnetic Resonance Imag-

ing) are available structual imaging techniques for the 

diagnosis, staging, and management of pancreatic 

neoplasms. Trans-abdominal ultrasound is a first-line 

screening modality for evaluating patients with suspi-

cious pancreatic disease, because of its advantages 

include wide availability, low cost, and lack of radia-

tion. However, it is sometimes difficult to evaluate 

the entire pancreas because of gas-fat interferences 

and the diagnostic ability greatly depends on the op-

erator’s experience. EUS combines ultrasound with 

endoscopy, overcomes those limitations and obtains a 

higher resolution imaging of the pancreas and adja-

cent structures. It is also possible to obtain tissue 

specimen for histologic diagnosis using EUS-guided 

fine needle aspiration. However, it also has several 

limitations such as lack of widespread availability, a 

small field of view, and the need for patient sedation. 

Enhanced CT with iodinated contrast medium is now 

routinely performed for the diagnosis of suspicious 

pancreatic lesions, especially for assessment of resec-

tability, assessment of vascular invasion with good 

spatial and temporal resolution. MRI is superior to 

CT in the evaluation of soft tissue and static fluid. A 

variety of techniques are used for further identifica-

tion and characterization of pancreatic diseases：

dynamic studies following gadolinium injection; 

magnetic resonance cholangio-pancreatography 

(MRCP); and diffusion-weighted imaging (DWI). 

MRCP allows the non-invasive delineation of the 

pancreatic duct and biliary tract. This technique will 

probably replace invasive endoscopic retrograde 

cholangiopancreatography (ERCP) for diagnosis of 

small pancreatic masses , although its disadvantage is 

that it does not permit tissue sampling.However,these 

used structual imaging modalities are not specific in 

disease diagnosis, then distinguishing pancreatic ade-

nocarcinoma from nonmalignant masses remains a 

challenge [3, 4], especially for lesions smaller than 2 

cm and cause an inconspicuous border deformity of 

the pancreas[5]. Meanwhile, chronic pancreatitis is 

notoriously difficult to diagnose, no applicable blood 

test currently used for chronic pancreatitis, and conse-

quently this disease is diagnosed mainly through con-

ventional insensitive imaging techniques. Hence, dis-

tinguish chronic pancreatitis from pancreatic cancer is 

still a difficulty, there is no established method for 

early detection of pancreatic cancer [1, 6].  

 

Contrast to conventional anatomical imaging tech-

niques, molecular imaging modalities such as posi-

tron emission tomography (PET) can provide infor-

mation on tumor function, it is a nuclear imaging 

technique used to visualize, characterize, and measure 

biological processes at the cellular, subcellular, and 

molecular level in living subjects non-invasively[7]. 

In combination with probes or tracers that bind to and 

enable detection of disease-specific molecules[4]. 

Currently, hardware fusion PET/CT imaging is the 

general trend. Hardware fusion PET/CT not only in-

creases diagnostic accuracy, but also significantly 

decreases the time required for attenuation correction. 

Numerous targeting moieties have been employed as 

vehicles of PET probes, including small molecules, 

peptides, protein, antibody and its fragments, as well 

as nanoparticles. This review summarizes current 

PET molecular imaging tracers or probes for pancre-

atic cancer detection and provides an overview of the 

current status and trends in the development of pan-

creatic cancer target-specific probes. 

 

2-deoxy-2-[18F]-fluoro-d-glucose (18F-FDG) imag-

ing of glucose metabolism 

To date, the glucose analogue 18F-FDG PET has been 

the most commonly used radiotracer wordwide. At 

present, it is most applied for staging, planning treat-

ment, predicting prognosis, monitoring the response 

to therapy, evaluating recurrences as well. As glucose 

metabolism changes in tissue usually predate any 

structural changes of the pancreas, 18F-FDG may be 

more sensitive for detecting early malignancies. 

Rijkers et al.[8] performed a meta-analysis, in which 
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thirty-five studies were included. Pooled estimates for 
18F-FDG PET/CT were: sensitivity 90%, specificity 

76%, PPV 89%, NPV 78% and accuracy 86%, re-

spectively. The pooled sensitivity and specificity for 
18F-FDG PET/CT to differentiate between pancreatic 

cancer and chronic pancreatitis were 90% and 84%, 

respectively. It concluded that 18F-FDG PET/CT 

showed no superiority to the current primary diagnos-

tic tools in diagnosing pancreatic cancer. First, 18F-

FDG is a non-specific imaging tracer, increased glu-

cose metabolism at inflammatory lesions is the main 

source of false-positive. Second, due to the presence 

of pancreatic cancer or underlying disease, a high 

percentage of these patients are diabetic, and elevated 

plasma glucose levels will cause a high rate of the 

false negative. Therefore, both false positive and false 

negative are common for 18F-FDG in pancreatic can-

cer diagnosis. 

 

[18F]-fluoro-3-deoxy-3-fluorothymidine(18F-FLT) 

imaging of cellular proliferation  

Thymidine is a native nucleoside, which is exclusive-

ly incorporated into the cellular DNA. 18F-FLT, an 

analogue of thymidine, can be performed for clinical 

evaluation and quantification of proliferative activity 

and tumor invasiveness. There many clinical re-

searches evaluated the potential value of 18F-FLT 

PET/CT for imaging pancreatic adenocarcinoma [2, 

9, 10]. Quon et al.[9] compared 18F-FLT and 18F-FDG 

PET/CT scan in five patients. On 18F-FLT PET/CT, 

the primary pancreatic adenocarcinoma was detected 

in 40% patients from background activity. By con-

trast, 18F-FDG uptake was higher in each patient and 

primary cancer could be detected in 100% patients. 

Clinical studies performed so far have not shown a 

distinct advantage for 18F-FLT over 18F-FDG. Overall, 

tumor 18F-FLT uptake is lower than 18F-FDG uptake 

in most cancers, reflecting the higher sensitivity of 
18F-FDG. 

 

However, how about 18F-FDG and 18F-FLT imaging 

in the context of infection and inflammation? Van et 

al.[11] compared 18F-FLT and 18F-FDG for differenti-

ating tumor from inflammation in a rodent model. 

They discovered in 18F-FDG PET images, both tumor 

and inflammation were visible, but 18F-FLT PET 

showed only the tumor. Thus, it was hypothesized 

that 18F-FLT has a higher tumor specificity in rodent 

model. However, its potential in differentiation be-

tween tumor and inflammation has not yet been eval-

uated in humans, further studies may be required. 

 

Imaging with antibodies-based probes 

Yet most novel imaging probes are hindered by 

suboptimal tumor accumulation, to overcome these 

limitations, researchers have explored numerous anti-

bodies for PET imaging purposes [12-15]. Antibody-

based probes have advantages of antigen-specific, 

high binding affinity and absolute tumor uptake.  

 

1) 64Cu-Labeled MAb159 

The glucose-regulated protein78 (GRP78) receptor is 

overexpressed on the surface of tumor cells, and it is 

capable of serving as a receptor or target of anti-

cancer drugs[16]. Wang et al.[15] developed a 64Cu-

labeled monoclonal antibody, MAb159 for PET imag-

ing of tumor GRP78 expression. In BXPC3 xeno-

grafts, 64Cu-DOTA-MAb159 demonstrated prominent 

tumor accumulation (15.4 ± 2.6, and 18.3±1.0%ID/g 

at 17h, and 48 after injection, respectively). On con-

trary, 64Cu-DOTA–human IgG had much lower tumor 

accumulation. It was demonstrated that GRP78 can 

serve as a valid target for pancreatic cancer imaging 

and may also have important applications in other 

types of cancer with high expression of GRP78. 

 

2) Zirconium-89 (89Zr)-labeled anti-IGF-1R anti-

body 

Insulin-like growth factor-1 receptor (IGF-1R) plays 

an important role in cancer tumorigenesis. England et 

al.[17] reported the development of an 89Zr labeled 

anti-IGF-1R antibody (89Zr-Df-1A2G11) for PET 

imaging of pancreatic cancer. Serial PET imaging 

was performed at different time points after 89Zr-Df-

1A2G11 was injected into MIA PaCa-2, BxPC-3, and 

AsPC-1 tumor bearing mice. The highest accumula-

tion of 89Zr-Df-1A2G11 was found in the MIA PaCa-

2-derived tumor model at 12 h postinjection (7.28 ± 

1.36%ID/g). This study provides initial evidence that 
89Zr-labeled IGF-1R-targeted antibody may be em-

ployed for imaging pancreatic cancer.  
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3）64Cu labeled ALT-836 

The expression of tissue factor (TF) is upregulated in 

many solid tumors. Weibo Cai’s group ever first suc-

cessfully developed TF targeted imaging probe for 

pancreatic cancer detection [18]. ALT-836 is a TF 

monoclonal antibody that can bind to TF with subna-

nomolar affinity. 64Cu-NOTA-ALT-836 is capable of 

binding TF, and it revealed that the uptake of the trac-

er was 16.5±2.6%ID/g in BXPC-3 pancreatic cancer 

models with high TF expression at 48 h after injec-

tion (Fig.1). Furthermore, the biodistribution data 

were consistent with the PET findings. 

 

 

 

 

 

 

 

 

 

 

 Fig.1 64Cu labeled ALT-836 imaging of TF and its 

block study[18]. 

 

4) 124I-labeled anti-CA19-9 diabody  

Due to a long serum half-life (10–20d), intact anti-

bodies are poor imaging agents. Slow tumor accumu-

lation and high background signal are the conse-

quence of inconspicuous contrast between the tumor 

and surrounding blood. Smaller engineered antibody 

fragments undoubtedly overcome this problem. The 

diabody (55 kDa) is the smallest antibody fragment 

(serum half-life:2-4h). Girgis et al.[19] successfully 

engineered a functional diabody against CA19-9, and 

an isotope iodine-124 (124I) was labeled to it. It was 

proved that 124I-anti-CA19-9 diabody demonstrated 

high contrast antigen specific in pancreas xenograft 

imaging. The average tumor/blood ratio of nude mice 

carrying CA19-9 positive and negative models with 

the 124I-labeled anti-CA19-9 diabody was 5.0 and 2.0, 

respectively, and the average tumor ratio of positive/

negative was 11 and 6, respectively.  

 

 

 

Peptides based tracers for imaging  

As compared to antibodies, low-molecular-weight 

peptides have their distinctive advantages: short 

blood lifetime; non-immunogenic; relatively inexpen-

sive to synthesize; easy to modify [7, 20]. Conse-

quently, numerous peptide-based agents have been 

developed to the specific molecular targets in preclin-

ical and clinical studies (Table 1).  

 

Targeting αvβ6 integrin 

Integrin alphavbeta6 (αvβ6) is one of cell surface re-

ceptors low expressed in the mature tissue, but signif-

icantly up-regulated in PDAC, which was considered 

to be a promising target for diagnostic imaging and 

therapy[21, 22]. 

 

   i)Peptide NAVPNLRGDLQVLAQKVART 

(A20FMDV2) was derived from foot-and-mouth dis-

ease virus with 20 amino acids, which presented a 

potent inhibition of αvβ6 ( IC50 3 nmol/L) was identi-

fied by the Hausner group[20]. A20FMDV2 was ra-

diolabeled by using 4-[18F] fluorobenzoic acid, and it 

was a first-generation radiotracer for targeting αvβ6 

in vivo. It appeared rapid uptake (<30 min) and selec-

tive long retention (>5 h) of radioactivity in the αvβ6-

positive tumor, the ratio of tumor-to-background was 

steady over time, and the tracer with fast renal elimi-

nation. Several mice also underwent [18F] FDG Mi-

cro-PET scan 1 h after injection, and there was no 

difference in [18F] FDG uptake between positive and 

negative mice models. [18F]FBA-PEG(28)-

A20FMDV2 was an improved αvβ6 imaging agent 

based on the former study(Fig.2)[23]. The modified 

agent maintained a higher affinity for αvβ6 and 

showed significantly improved αvβ6-dependent bind-

ing. In BxPC-3 tumors, the modified tracer showed 

retention of 12-fold greater than retention of the non-

PEGylated [18F] FBA-A20FMDV2. At 4 hours, tu-

mor-to-pancreas and tumor-to-blood biodistribution 

ratios achieved >23:1 and >47:1, respectively. Signif-

icantly, [18F] FBA-PEG(28)-A20FMDV2 was superior 

to [18F]FDG in imaging the BxPC-3 tumors, and it 

has potential in clinics for αvβ6-specific tumor imag-

ing.  
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Fig.2 [18F]FBA-PEG(28)-A20FMDV2 microPET  im-

aging of αvβ6 in pancreatic cancer xenografts and 

block study[23].  

 

ii）Hackel Group[24] synthesized peptides R01 and 

S02 (Figs.3), and were conjugated with 18F-

fluorobenzoate. After injection for both peptides, the 

tumor was clearly visualized as early as 0.5 h 

(Figs.4). 18F-fluorobenzoate-R01 presents greater tu-

mor uptake than 18F-fluorobenzoate-S02, and both 

have comparable tumor-to-muscle ratios: 3.1±1.0 and 

2.9±0.4 at 0.5 and 1 h, respectively. Imagings were 

also performed with integrin avb6–negative xeno-

grafted mice. Both exhibits significantly less uptake 

than BxPC3 xenografts (Figs.4). 

 

 

 
 

Fig. 3 R01 and S02 are cystine knot peptides. N-

terminal amine was coupled with 18F-SFB. Peptide 

sequences are presented, conserved residues were 

highlighted[24]. 

 
Fig. 4 Micro-PET imaging. 18F-fluorobenzoate-R01 

(A) or 18F-fluorobenzoate-S02 (B) were injected into 

nude mice bearing BxPC3 pancreatic adenocarcinoma 

cells (integrin avb6–positive) or 293 (integrin avb6–

negative) tumors. At 0.5, 1, and 2 h after injection, 

five-minute static scans were acquired. Coronal and 

transverse slices are presented. Tumor (T) and kid-

neys (K) are signed on images[24]. 

 

2) Targeting αvβ3 integrin 

i) 68Ga-labeled NODAGA (1,4,7-triazacyclononane-

1,4-bis[acetic acid]-7-[2-glutaric acid])-conjugated 

RGD peptide (68Ga-NODAGA-RGD) was the first 

tracer used for visualization of αvβ3 expression in 

spontaneous PDAC occurring mice[25]. Both in mu-

rine and human PDAC, αvβ3 expression were con-

firmed. High uptake of 68Ga-NODAGA-RGD in 

PDAC was detected and the accumulation decreased 

dramatically when blocked by αvβ3 inhibitor. The 

tracer was well tolerated and stable in vivo, and was 

ever applied in a clinical trial for hepatocellular carci-

noma (HCC) detection, however, it was confirmed 

that its accumulated was not sufficient [26]. As for 

PDAC, no clinical studies are undertaken currently. 
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ii) ⁶⁴Cu-labeled cyclam-RAFT-c(-RGDfK-)₄ peptide 

(⁶⁴Cu-RAFT-RGD) is another tracer targeting αvβ₃ 

integrin. Biodistribution data revealed that the radio-

activity in tumor was nearly six times higher than 

surrounding normal pancreas. The blocking study 

confirmed that the binding of the probe to the tumor 

is highly αvβ3 integrin-specific. In comparison, ⁶⁴Cu-

RAFT-RGD accumulation was superior to [¹⁸F]-

FDG, which provided better tumor contrast to the 

background. It is potentially applicable for the diag-

nosis of pancreatic cancer with high αvβ3 integrin 

expression [27].  

 

3) Targeting Hsp90 

Heat shock protein 90 (Hsp90) plays an important 

role in the progress of malignant disease and elevated 

Hsp90 expression has been reported in pancreatic 

cancer. It resides exclusively in the cytosol in normal 

cells, but is activated and then removes to the cell 

surface in tumor cells [28, 29]. Furthermore, Hsp90 

inhibitors selectively kill cancer cells compared to 

normal cells, it was reported that Hsp90 derived from 

tumour cells has a 100-fold higher binding affinity 

for the Hsp90 inhibitor 17-allylaminogeldanamycin 

(17-AAG) than does Hsp90 from normal cells [30]. 

Therefore, Hsp90 is an attractive target for cancer 

imaging [31, 32]. we found the most powerful 

Sansalvamide A derivative (IC501-20nM) , and radio-

labeled 64Cu-Di-San A1 (Fig.5) for PET imaging of 

Hsp90 expression in a mouse model of pancreatic 

cancer. 64Cu-Di-San A1 was successfully prepared in 

a radiochemical yield >97% with a radiochemical 

purity >98%. Micro PET study shows good in vivo 

performance in terms of tumor uptake in nude mice 

bearing pancreatic cancer. The Hsp90-specifc tumor 

activity accumulation of 64Cu-Di-San A1 was further 

demonstrated by significant reduction of PL45 tumor 

uptake with pre-injected an Hsp90 inhibitor 

(17AAG). The ex vivo PET imaging and biodistribu-

tion results were consistent with the quantitative 

analysis of PET imaging, demonstrating good tumor-

to-muscle ratio (5.35±0.46) at 4 h post-injection in 

PL45 tumor mouse xenografts. 64Cu-Di-San A1 al-

lows PET imaging of Hsp90 expression in PL45 tu-

mors, which may provide a non-invasive method to 

quantitatively characterize Hsp90 expression in pan-

creatic cancer [33]. 

Fig. 5 The chemical structure of  64Cu-Di-San A1 

Table 1: Radiosynthesis of peptides based PET Tracers for pancreatic cancer 

Compounds Target Synthe-
sis time 

Clinical 
availa-
ble 

Specific activity 
(%ID/g) 

Different ratios HPLC 
need-
ed 

Radiochemi-
cal yield (%) 

Ref 

  
[18F]FBA-A20FMDV2 
[18F]FBA-PEG28-
A20FMDV2 
[18F]FBA-(PEG28)2-
A20FMDV2 

  
  
  
  
αvβ6 

  
  
130 min 

  
  
  
  
No 

 
0.69 ± 0.19 
1.85 ± 0.44 
1.57 ± 0.25 

tumor-to-background 
(1h:2.2:1 ; 
3h :3.5:1) 
tumor-to-blood 
>47:1 

  
Yes 
  
  

  
3.6% 
_ 
_ 

  
  
  
[20, 
23] 

18Ffluorobenzoate-R01 
  
18F-fluorobenzoate-S02 

  
45 min 

1.4 ± 0.6 
0.5 ± 0.2 

tumor-to-muscle 
3.1±1.0 
2.9 ±0.4 

Yes 23% ±13%   
[24] 

68Ga-NODAGA-RGD 
  

  
αvβ3 

  
5min 

Clinical 
trial 
(Phase 
I) 

2-10   
      __ 
  

No > 96%   
[25] 

64Cu-RAFT-RGD 60 min No 6.01 ± 0.75 Tumor to blood: 
46.64 ± 9.93 
Tumor to- muscle 
9.3 ± 0.25 

Yes >98%   
[27] 

64Cu-Di-San A1 Hsp90 2 h No 2.97±0.58 tumor-to-muscle 
5.35±0.46 

Yes >97% [33] 
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Targeting specific genes 

G-protein-coupled cholecystokinin B receptor 

(CCKBR) was constitutively expressed on the sur-

face of PDAC cells. Clawson et al.[34] described 

selection and characterization of high-affinity DNA 

aptamers (APs) to the CCKBR. Moreover, the uptake 

was increased in vivo of orthotopic PDAC tumors 

compared with native ligand gastrin. One AP, named 

AP1153 was chosen for further studies. They found 

that AP1153 was internalized by PDAC cells in a 

receptor-mediated manner. Bioconjugation of 

AP1153 to the surface of fluorescent NPs greatly fa-

cilitated delivery of NPs to PDAC tumors in vivo. 

The AP-targeted NP delivery system has potential for 

enhanced early detection of PDAC lesions [34]. 

 

The majority of patients with PDAC carry mutant 

KRAS2 oncogenes, and KRAS2 mRNA was activated 

and overexpressed in pancreatic cancer cells [35, 36]. 

Early detection of activated specific KRAS2 mRNAs 

in PDAC in vivo would be feasible by molecular im-

aging [37-39]. These probes are designed to bind to 

internalize and hybridize with KRAS oncogene 

mRNA that is overexpressed in pancreatic cancer.  

 

CONCLUSION AND PERSPECTIVES 

Pancreatic ductal adenocarcinoma (PDAC) is the 

most representative type of pancreatic cancer. It be-

gins in the cells lining the pancreatic duct. PDAC 

solid tumors are composed of heterogeneous popula-

tions of cells including cancer stem cells, differentiat-

ed cancer cells ( high-grade, moderate and worst dif-

ferentiation), desmoplastic stroma and immune cells

[40]. Although overall survival rates have improved 

for most cancers, pancreatic cancer is still currently 

most lethal malignancy[12, 41]. It has lowest survival 

rates among cancers, its deaths have not been de-

creasing over the past few years. Its 5-year survival 

rate is constant at a 6%, with more than 80% mortali-

ty within a year of diagnosis [1, 42, 43]. The lack of 

early diagnosis and ineffective treatment for ad-

vanced tumors are primarily the cause of the highly 

mortality. PDAC is on track to become the second 

most common cause of cancer-related deaths by 2030 

in the United States[44].  

 

Early pancreatic cancers often present atypical signs 

or symptoms. By the time they do cause symptoms, 

they have often already spread outside the pancreas. 

Jaundice is usually a typical symptom when the mass 

is located at head of pancreas. There are numerous 

risk factors cause pancreatic cancer. However, many 

people who get the disease may seldom have known 

risk factors. 

 

Imaging is critical for the detection, characterization, 

management of pancreatic cancer cases [45, 46]. Due 

to the limitations of current anatomical imaging tech-

niques, early detection of pancreatic cancer remains a 

field requires further improvement. Compared to 

conventional anatomical imaging technique modali-

ties, PET is a new emerged and functional imaging 

tool that can offer the possibility of quantification of 

diseases associated biochemical processes[47]. It is 

commonly used for cancer diagnosis and staging, as 

well as offering prognostic information. Due to its 

low spatial resolution, pure PET imaging is subse-

quently combined with an X-ray CT scanner, which 

is able to overcome the drawback of PET. 

Thus, functional imaging obtained by PET, which 

depicts  the spatial distribution of  metabol-

ic or biochemical activity in the body can be more 

precisely aligned with anatomic imaging obtained by 

CT scanning, and both functional and anatomical 

information are presented simultaneously in the same 

image. Other than traditional imaging modalities, 

injection of molecular imaging agents in the tested 

subject are required in order to acquire the PET im-

aging signals. Based on diverse principles, different 

agents may appear different images to the same le-

sion of the subject.  

 

In this review, five general categories of PET imag-

ing agents were examined, each tracer has its ad-

vantage and disadvantage, when designing novel re-

search studies involving pancreatic cancer diagnosis, 

the current limitations of each category tracer should 

be considered. Taken together these tracers or probes 

represent promising methods for the establishment of 

novel imaging agents in the future. Meanwhile, the 

molecular markers mentioned in the review are also 

attractive targets for pancreatic cancer therapy when 
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a precursor is labeled with long half-life radionuclide, 

such as 177Lu (t1/2:6.73d) and 89Zr (t1/2:78.4 h). 

 
18F-FDG is the solely globally most commonly used 

imaging tracer in clinic, it is regarded as the 

“molecule of the century” in nuclear medicine. Now-

adays, it is mainly used for oncology, which has great 

superiority in accurate staging, assessment of the 

therapeutic response and detection of recurrenc-

es. But as for diagnosis of tumor itself, 18F-FDG has 

its intrinsic limits. In order to overcome the overlaps 

between malignancy and benign lesions, dual-time-

point-imaging (DPI)--at approximately 1 hour (early) 

and 2 hours (delayed) after injection are recommend-

ed [48, 49]. Delayed phase of 18F-FDG imaging may 

increase primary lesion detectability due to higher 

FDG uptake in primary tumors compared to the early 

phase of imaging [50, 51]. DPI may also help to dif-

ferentiate between inflammatory and malignant 

lymph nodes [52]. However, it increased sensitivity 

for lesion detection (compromised specificity). There 

was study declared overall accuracy of DPI 

FDG PET/CT were better than that of single phase 

for less than 25 mm tumor, it might be useful for di-

agnosing small pancreatic tumors [49]. Besides, PET 

with enhanced CT will not only play an important 

role in differential diagnosis, but also give additional 

information concerning peripheral blood vessel. 

Whereas, in most PET/CT centers, only non-

enhanced CT scans are undertaken. 

 

Although numerous molecular imaging agents either 

directly measure metabolism of cells or bind to the 

overexpressed specific targets had been developed, 

only very few are translated into clinic for the diag-

nosis of pancreatic cancer. Most of these imaging 

modalities remain highly debatable and uncertain, 

which may be resolved through concerted coopera-

tion from basic researchers in combination with radi-

ologists and multicenter clinical trials [53]. Targeting 

of cell surface receptors overexpressed in cancer re-

mains the most promising strategy for designing mo-

lecular imaging probes. A novel imaging probe with 

clinical translation potential is supposed to have the 

following unique characteristics: High binding affini-

ty and specificity to target; High sensitivity, contrast 

ratio and stability in vivo; Low immunogenicity and 

toxicity; Production and economical feasibility[47]. 

Considering the liver is the most common metastatic 

organ for pancreatic cancer, hence to explore novel 

imaging agents with lower live uptake is also very 

important. In addition, improved instrumentation 

with high spatial resolution and lower expenditure is 

also should be considered. As for tumor models, or-

thotopic models probably reflect the physiological 

character of pancreatic cancer. Currently, most ani-

mal models in researches are subcutaneous 

 

In the future, molecular imaging will pave a pathway 

to both personalized medicine and precision medi-

cine. Patients at risk for pancreatic cancer may be 

screened using highly optimal imaging agents and 

early detection is feasible to save millions of lives. 

However, great efforts are remain required to explore 

new imaging tracers that can overcome drawbacks of 

currently used agents and push more and more novel 

agents to serve to more patients in clinic.  
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