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ABSTRACT 
Brassicaceae plants, as an important source of primary and secondary metabolites, are becoming a re-

search model in plant science. Plants have developed different ways to ward off environmental stress 

factors. This is lead to the activation of various defense mechanisms resulting in a qualitative and/or 

quantitative change in plant metabolite production. Reactive oxygen species (ROS) is being continu-

ously produced in cell during normal cellular processes. Under stress conditions, there are excessive 

production of ROS causing progressive oxidative damage and ultimately cell death. Despite their de-

structive activity, ROS are considered as important secondary messengers of signaling pathway that 

control metabolic fluxes and a variety of cellular processes. Plant response to environmental stress 

depends on the delicate equilibrium between ROS production, and their scavenging. This balance of 

ROS level is required for performing its dual role of acting as a defensive molecule in signaling path-

way or a destructive molecule. Efficient scavenging of ROS produced during various environmental 

stresses requires the action of several non-enzymatic as well as enzymatic antioxidants present in the 

tissues. In this review, we describe the ROS production and its turnover and the role of ROS as mes-

senger molecules as well as inducers of oxidative damage in Brassicaceae plants. Further, the antioxi-

dant defense mechanisms comprising of enzymatic and non-enzymatic antioxidants have been dis-

cussed. 
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1. INTRODUCTION 

One of the most damage effects of the abiotic stress 

in plants is the production of toxic ROS in different 

cellular and sub-cellular compartments [1]. Some 

ROS are considered to be the most potent reactive 

ions known. They are generated due to the decreased 

content of intracellular CO2, this results in the trans-

fer to O2 of one, two or three electrons, to form super-

oxide (O2
-), hydrogen peroxide (H2O2) or the hydrox-

yl radical (HO-), respectively [2]. Due to their reactiv-

ity with various key cellular components, their excess 

can lead to irreparable metabolic dysfunction and cell 

death [3,4]. At normal conditions, the small amounts 

of ROS are by-products of normal cell metabolism, 

formed in vital processes such as respiration, pho-

torespiration and photosynthesis [5,6]. Abiotic stress 

increases their production resulting of oxidative dam-

age [7,8]. The presence of high concentrations of 

ROS in the cell leads to major disturbance of ionic 

homeostasis by depressing cytosolic  K+  concentra-

tions followed by activation of proteases and endonu-

cleases [9,10], alteration of the cell membrane integ-

rity, inhibition of enzyme activities and the function 

of the photosynthetic apparatus and of DNA lesions. 

The collective effect can lead to cell death [11,12]. 

Under non-stressful conditions, ROS at low cellular 

concentrations play a key role as signaling molecules 

involved in plant growth, development, hormonal 

action and many other physiological processes 

[5,8,13-16]. Such low-level ROS functions include 

triggering of antioxidant defense mechanisms for 

adapting to abiotic stress [12,16-18]. In fact, ROS at 

concentrations much lower than those causing cellu-

lar damage, can activate different Na+- and K+-

permeable ion channels [19-21] that help maintain the 

cytosolic K+/Na+ ratios needed for salinity tolerance 

[22]. The production of ROS is the outcome of a 

plant metabolism that needs to be controlled to safe-

guard its cellular components [23]. Under stress con-

dition, plants activate enzymatic and non-enzymatic 

antioxidant systems. The latter include antioxidant 

compounds such as ascorbic acid, glutathione, flavo-

noids, β-carotenes or other phenolic compounds. 

Among enzymatic antioxidant systems are superoxide 

dismutases (SOD), catalase (CAT), ascorbate peroxi-

dase (APX) or redox regulatory enzymes such as glu-

tathione reductase (GR), among many others [24]. 

Under stress conditions, the biosynthesis and the ac-

tivities of these antioxidant molecules are altered 

[14,25-27]. 

 

The genus Brassica includes economically important 

oilseed and vegetable plants. This group comprising 

about 100 species, including mustard (Brassica 

juncea L.), rapeseed (B. napus L.), turnip rape (B. 

rapa L.) and cabbage (B. oleracea L.) that are grown 

mainly for oil and vegetables [28]. Brassicaceae is 

grown in both arid and semiarid regions and is se-

verely affected by both biotic stresses, including bac-

teria, viruses and fungi, and abiotic stresses, including 

cold, heat, salinity and drought. Brassica is a good 

source of antioxidants due to the presence of high 

phenolics and glucosinolate content [29].  

 

In this review, the effect of oxidative stress on Brassi-

caceae and the role played by ROS as signaling mole-

cule in the mechanism of response of Brassicaceae to 

abiotic stress are discussed in detail.  

 

2. Family Brassicaceae 

The Brassicaceae (or cruciferae/mustard family) is 

considerably a large angiosperm family of dicots be-

longing to order brassicales with 10–19 tribes com-

prising of 338–360 genera and 3709 species [30]. The 

largest genera are Draba (365 species) followed by 

Lepidium (230 species), Erysimum (225 species), 

Cardamine (200 species) and Alysum (195 species) 

[31]. The family comprises of several plant species 

with agronomic and economic significance including 

model species (e.g. Arabidopsis and Brassica), devel-

oping model systems (e.g. Brassica and Cradamine) 

as well as various cultivated plant species (e.g. cauli-

flower, horseradish, cabbage, turnip, etc.) [32]. In 

1934, Morinaga [33], using cytological work demon-

strated the relationships among the cultivated Brassi-

ca species. According to his hypothesis, the high 

chromosome number of species B. napus (2n = 38, 

AACC), B. juncea (2n = 36, AABB), and B. carinata 

(2n = 34, BBCC) are amphidiploids combining in 

pairs the chromosome sets of the low chromosome 

number species B. nigra (2n = 16, BB), B. oleracea 

(2n = 18, CC), and B. rapa (2n = 20, AA) (Figure 1). 
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The family Brassicaceae serves as a good source 

of oils, vegetables, weeds, and ornamentals of 

huge economic importance. For example, locally 

known as shagsoo, Christolea is used as vegeta-

ble in combination with milk in addition to the 

edible Meeacarpea species. Mustards (B. nigra 

and B. juncea) are used as condiments. Seeds of 

B. campestris, B. juncea, B. nigra and B. pe-

kinensis are crushed in preparation of edible oils. 

In different regions, Camelina sativa, Eruca sati-

va and Sinapis alba which are odiferous are also 

cultivated as oil plants along with the seeds of 

Capsella which contain about 15–20% oil. The 

seeds of Conringia orientalis contain fatty oil 

and its young sprouts are also comestible. Fresh 

leaves of Lepidium sativum are used as salad, and 

its seeds contain 5% fatty oil, making it worthy 

for illumination. Some species like Arabis are 

cultivated as ornamentals in rock gardens. Par-

rya exscapa grows at high altitudes laced with 

beautiful flowers. Different pigments from Isatis 

tinctoria serve as a dying agent besides being a 

honey-producing plant. Erysimum Perofskianum 

seeds serve as crude material for the formulation 

of cardiac drugs in pharmaceutical industry. 

Figure 1. The U-triangle showing derivation of the 

high chromosome Brassica species from low chromo-

some species 

3. Oxidative Stress and Generation of ROS 

During abiotic stresses, plants undergo several 

mechanisms to combat increased ROS production. 

The balance between production and scavenging 

of ROS may be disturbed by a number of biotic 

and abiotic factors, which may increase the intra-

cellular levels of ROS [13]. When the level of 

ROS exceeds the defense mechanisms, the cell is 

in a state of oxidative stress [4,13]. Oxidative 

stress leads to the loss of physiological capacity 

and eventual cell death. Therefore, defense mech-

anisms against oxidative damage are activated 

during stress to regulate toxic levels of ROS [34]. 

ROS are a group of free radicals, reactive mole-

cules, and ions derived from oxygen. The most 

common ROS include singlet oxygen (1O2), su-

peroxide radical (O2
⋅−), hydrogen peroxide 

(H2O2), and hydroxyl radical (OH⋅). These sub-

stances are highly reactive and toxic and can lead 

to oxidative destruction of the cell [13,14,27]. 

ROS are generated mainly by mitochondrion via 

electron transport. However, it can found in others 

various subcellular compartments such as chloro-

plasts via the Mehler reaction, and peroxisomes 

via photorespiration [14]. The oxidative stress 

usually results from excessive ROS production, 

mitochondrial dysfunction, impaired antioxidant 

system, or a combination of these factors. Abiotic 

and biotic stresses can severely disturbed the bal-

ance between production and elimination of ROS 

[5]. These disturbances in the ROS equilibrium 

(redox homeostasis) can lead to a rapid increase in 

intracellular ROS levels, which can cause signifi-

cant damage to cell structures [35]. However, 

when ROS production overcomes the cellular 

scavenging capacity, there occurs an unbalancing 

of the cellular redox homeostasis resulting in a 

rapid and transient excess of ROS, known as oxi-

dative stress [4,34]. Thus, the antioxidant defense 

imbalance disrupts metabolic activities [36], caus-

ing severe oxidative damages to cellular constitu-

ents, which can lead to loss of function and even 

cell death (Figure 2) [34].  
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Figure 2. Stress factors, ROS generation, oxidative 

damage, and antioxidant defense. Several stress fac-

tors increased the ROS production, such as HO., O-
2, 

1O2, and H2O2. The increased ROS levels lead to oxi-

dative stress. Consequently, oxidative damage at the 

molecular and cellular levels occurs. Defense mecha-

nisms against oxidative stress are activated to neutral-

ize toxic levels of ROS. Singlet oxygen (1O2), super-

oxide radical (O2
•-), hydrogen peroxide (H2O2), and 

hydroxyl radical (OH.). 

 

Enhanced level of ROS can cause damage to biomol-

ecules such as lipids (lipid peroxidation), proteins 

(fragmentation of the peptide chain) and DNA 

(deoxyribose oxidation, strand breakage, removal of 

nucleotides, variety of modifications in the organic 

bases of the nucleotides, and DNA-protein cross-

links), and so forth ultimately resulting in cell death 

[4]. To avoid potential damage caused by ROS and to 

maintain growth, development and metabolism, the 

balance between production and elimination of ROS 

must be regulated. Plants possess complex antioxida-

tive defense system comprising of non-enzymatic and 

enzymatic components to scavenge ROS [5,14]. Non-

enzymic components of the antioxidative defense 

system include the major cellular redox buffers ascor-

bate (AsA) and glutathione (γ-glutamyl-cysteinyl-

glycine, GSH) as well as tocopherol, carotenoids, and 

phenolic compounds [5,14,36]. The enzymatic com-

ponents of the antioxidative defense system comprise 

of several antioxidant enzymes such as superoxide 

dismutase (SOD), catalase (CAT), guaiacol peroxi-

dase (GPX), enzymes of ascorbate glutathione (AsA-

GSH) cycle ascorbate peroxidase (APX), monodehy-

dro ascorbate reductase (MDHAR), dehydroascorbate 

reductase (DHAR), and glutathione reductase (GR) 

[5,36]. Various components of antioxidative defense 

system involved in ROS scavenging have been al-

ready well characterized into plant models, and dis-

turbances or alterations in this system are an excel-

lent strategy to understand the different signaling 

pathways involving ROS. 

 

3.1. Nonenzymatic antioxidants 

Nonenzymatic antioxidants interact with numerous 

cellular components and play key roles in defense 

and as enzyme cofactors. Moreover, these antioxi-

dants influence plant growth and development, cell 

elongation and cell death [37].  

Ascorbate (AsA) is found in organelles of most plant 

cell types and in the apoplast. AsA has a key role in 

defense against oxidative stress caused by enhanced 

level of ROS because of its ability to donate electrons 

in a number of enzymatic and nonenzymatic reac-

tions. AsA can directly eliminate O2
⋅−, OH⋅, and 

1O2, and thus reduce H2O2 to water via the ascorbate 

peroxidase reaction [38]. AsA is generally main-

tained in its reduced state by a set of NAD(P)H-

dependent enzymes, including monodehydroascor-

bate reductase, dehydroascorbate reductase, and glu-

tathione reductase [14,27]. Moreover, AsA is in-

volved in the regulation of cell division, cell elonga-

tion and it participates in multiple functions in photo-

synthesis [39].  

Glutathione (γ-glutamylcysteinyl- glycine, GSH) is 

one of the crucial thiol that plays an important role in 

intracellular defense against ROS-induced oxidative 

damage. GSH is oxidized by ROS to form oxidized 

glutathione (GSSG), which is present in all cellular 

compartments. The balance between the GSH and 

glutathione disulfide (GSSG) is a central component 

in maintaining cellular redox state [5,40,41]. Due to 

its reducing power, GSH plays an important role in 

diverse biological processes, including cell growth/

division, enzymatic regulation, regulation of sulfate 

transport, conjugation of metabolites, synthesis of 

proteins and nucleic acids, signal transduction and 
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the expression of the stress responsive genes [42]. 

Tocopherols (α, β, γ, and δ) is a group of lipophilic 

antioxidants involved in scavenging of oxygen free 

radicals, lipid peroxyradicals, and 1O2 [4]. The α-

tocopherol with its three methyl substituents has the 

highest antioxidant activity of tocopherols [43]. The α

-tocopherol present in the membrane of chloroplasts 

protects them against photooxidative damage [38,44]. 

Accumulation of α-tocopherol has been shown to in-

duce tolerance to water deficit, salinity and chilling, 

in different plant species [45,46]. Chemical investiga-

tion of Brassicaceae has revealed the presence of to-

copherols, of which α-tocopherol is the most abun-

dant [47]. 

Phenolic compounds are abundantly found in plant 

tissues, such as flavonoids, lignin, tannins, hy-

droxycinnamate esters, and possess antioxidant prop-

erties [48]. They have been shown to outperform well

-known antioxidants, AsA and α-tocopherol, in in 

vitro antioxidant assays because of their strong capac-

ity to donate electrons or hydrogen atoms. They also 

modify lipid packing order and decrease fluidity of 

the membranes [49]. Species within the Brassicaceae 

family are also rich in phenolics, including simple 

phenolic acids, flavonoids, anthocyanins and lignans 

as the major chemical classes [50,51]. 

3.2. Enzymatic antioxidants  

Enzymatic components of the antioxidative defense 

system comprise several antioxidant enzymes such as 

catalase (CAT, EC 1.11.1.6), superoxide dismutase 

(SOD, EC 1.15.1.1), glutathione peroxidase (GPX, 

EC 1.11.1.9), guaiacol peroxidase (POX, EC 

1.11.1.7), peroxiredoxins (Prxs, EC 1.11.1.15), en-

zymes of ascorbateglutathione (AsA-GSH) cycle 

ascorbate peroxidase (APX, EC 1.1.11.1), monodehy-

droascorbate reductase (MDHAR, EC 1.6.5.4), dehy-

droascorbate reductase (DHAR, EC 1.8.5.1), and glu-

tathione reductase (GR, EC 1.8.1.7) [5,14,36,27]. 

This antioxidant system plays an important role in the 

maintenance of cell homeostasis and in the antioxi-

dant response in plants.  

Catalases catalyze the dismutation of two molecules 

of H2O2 into water and oxygen. CATs are largely, but 

not exclusively, localized to peroxisomes. Plants pos-

sess multiple CATs encoded by specific genes, which 

respond differentially to various stresses that are 

known to generate ROS [52,53]. Overexpression of a 

CAT gene from Brassica juncea introduced into to-

bacco, enhanced its tolerance to Cd induced oxidative 

stress [54]. 

Superoxide dismutases catalyze the dismutation of 

O2
⋅ to H2O2. These enzymes may be attached to a 

metal ion (Mn, Fe, Cu/Zn, and Ni); thus, they are 

classified according to their subcellular location and 

metal cofactor. SOD activity has been reported to in-

crease in plants exposed to various environmental 

stresses, including drought and metal toxicity [53]. 

Ascorbate peroxidases are enzymes that play a key 

role in catalyzing the conversion of H2O2 in to H2O 

and use ascorbate as a specific electron donor. Plants 

have different APX isoforms that are distributed in 

distinct subcellular compartments, such as mitochon-

dria, chloroplasts, peroxisomes, and the cytosol. The 

APX genes are differentially modulated by several 

abiotic stresses in plants [55-57]. Overexpression of 

the tApx gene in either tobacco or in Arabidopsis in-

creased tolerance to oxidative stress [58]. The balance 

between SODs, CATs, and APXs is crucial for deter-

mining the effective intracellular level of O2
⋅ and 

H2O2, and changes in the balance of these appear to 

enhance compensatory mechanisms [13,52,53]. 

Glutathione peroxidases are nonheme thiol peroxi-

dases that catalyze the reduction of H2O2 or organic 

hydroperoxides to water. The GPX proteins have 

been identified in many life species [59]. In plants, 

the GPX proteins are localized to mitochondria, chlo-

roplasts, and cytosol.  

Peroxiredoxins are a family of thiol-specific antioxi-

dant enzymes that are involved in cell defense and 

protection from oxidative damage. The peroxiredox-

ins are a group of peroxidases that have reducing ac-

tivity in their active sites via cysteine residues. They 

do not possess a prosthetic group and catalyze the 

reduction of H2O2, peroxynitrite, and a wide variety 

of organic hydroperoxides to their corresponding al-

cohols [60]. The peroxiredoxins are widely distribut-

ed in plant cells and are important proteins in chloro-

plast ROS detoxification [61].  

Guaiacol peroxidases are involved in H2O2 detoxifi-

cation. The POX proteins are hemecontaining en-

zymes that belong to class III or the “secreted plant 

peroxidases”. Theses enzymes are able to undertake a 



Brini faiçal et al. 

——————————————————————————————————————————————————–

WWW.SIFTDESK.ORG 237 Vol-5 Issue-1 

SIFT DESK  

second cyclic reaction, called the hydroxylic reaction, 

which is distinct from the peroxidative reaction. Due 

to the use of both cycles, class III peroxidases are 

known to participate in many different plant process-

es, from germination to senescence, cell wall elonga-

tion, auxin metabolism, and protection against patho-

gens [62].  

Monodehydroascorbate reductase is a flavin ade-

nine dinucleotide enzyme that catalyzes the regenera-

tion of AsA from the monodehydroascorbate radical 

using NAD(P)H as an electron donor. Thereby, 

MDAR plays an important role in the plant antioxi-

dant system by maintaining the AsA pool [63]. 

Isoforms of MDAR have been reported to be present 

in the cytosol, chloroplasts, peroxisomes, and mito-

chondria [64]. Overexpression of Arabidopsis 

MDHAR gene in tobacco confers enhanced tolerance 

to salt stress [65]. Tomato chloroplastic MDHAR 

overexpressed in transgenic Arabidopsis enhanced its 

tolerance to temperature and methyl viologen-

mediated oxidative stresses [66]. 

Dehydroascorbate reductase is a thiol enzyme that 

maintains AsA in its reduced form. DHAR catalyzes 

the reduction of dehydroascorbate to AsA using GSH 

as a reducing substrate [36,63]. It is present in vari-

ous plant tissues, and its modulation activity has been 

reported in various plant species [67]. Transgenic 

potato overexpressing Arabidopsis cytosolic 

AtDHAR1 showed higher tolerance to salt, drought 

and herbicide stresses [68]. 

Glutathione reductase a NAD(P)H-dependent en-

zyme catalyzes the reduction of GSSG to GSH and, 

thus, maintains high cellular GSH/GSSG ratio. It is a 

key enzyme of the AsA-GSH cycle; it protects cells 

against oxidative damage; and it maintains adequate 

levels of reduced GSH. A high GSH/GSSG ratio is 

essential for protection against oxidative stress [15].  

 

4. Effect of Environmental Stress on Family Bras-

sicaceae 

The plant families Brassicaceae, also known as Cru-

ciferae, contain high phenolics and glucosinates lev-

els thereby considered them a good source of antioxi-

dants [69,70]. These compounds are known to have a 

preventive role against different types of diseases 

[69]. However, presence of some polyphenols, tan-

nins, glucosinolates, erucic acid and S-

methylcysteine sulfoxide, in Brassicaceae vegetables, 

reflected its anti-nutritional effects [71]. Under abiot-

ic and biotic stress, plants respond through activation 

of their defense system to ensure their growth and 

development [72,73]. In Brassica plants, these stress 

factors affect the primary and secondary metabolism, 

increasing the metabolite level production, e.g. amino 

acids, sugars and indoles [69,74]. Abiotic and biotic 

stresses enhance some specific secondary metabolite 

production which activate a number of signal path-

ways like abscisic acid (ABA), salicylic acid (SA), 

ethylene (ET) or jasmonic acid (JA) pathways [75]. 

These pathways are known to have a well-defined 

role in the plant defense responses [72,75]. 

 

4.1. Effect of Stress on Primary Metabolites 

Abiotic stress affects plant metabolite production 

[76]. In B. napus leaves drought stress lead to a dis-

tinctive increase of amino acids, followed by a reduc-

tion in concentration upon rehydration of the plants 

[77]. The same stress has been proved to increase 

sugar contents in cabbage seedlings as compared to 

their control ones [78]. Similarly, metal exposure 

caused rapid increase in the levels of photosynthetic 

pigments, free amino acids, proteins and sugar con-

tent compared to the unstressed plants [79]. In Ara-

bidopsis plants, ROS production were caused by cad-

mium stresses and this generate oxidative damage 

resulting in a significant decrease of chlorophyll con-

tent [80]. In B. pekinensis plants, increased total free 

amino acid content was noticed after exposure to 

copper stress, where free amino acids are reported to 

play a role in the detoxification of the copper stress 

[81]. Metal stress is also known to accumulate low-

molecular compounds with chelating properties in 

Brassica [82]. Also, the ascorbic acid content was 

reported to be largely decreased after boiling of brus-

sels sprouts, broccoli kale, and white cauliflower 

[83], whereas UV light exposure of broccoli (B. 

oleracea var. italica) caused an increased levels of 

ascorbic acid [84,85]. 

 

4.2. Effect of Stress on Secondary Metabolites 

Brassicaceae family is known for some metabolites 

like glucosinolates, which are derived from amino 
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acid biosynthesis (e.g. tryptophan, methionine, phe-

nylalanine, etc.) [76]. These compounds are benefic 

for human health including anti-carcinogenic, choles-

terol-reducing and other pharmacological effects 

[69,86,87] with some known anti-nutritional effects 

as well [88]. In addition, these secondary metabolites 

play a key role in plant defense after exposure to salt 

stress [89], wounding and/or pathogen attack [90], 

insect herbivory [91,92], other environmental stresses 

[93] or by plant signaling molecules [94], viz. SA, JA 

and MeJA [95].  

 

Brassicaceae is attributed also for a group of natural-

ly occurring plant steroidal compounds, brassinoster-

oids (BRs), with a broad range of biological activities 

and the capacity to make these Brassica plants to 

confer resistance against a wide range of both abiotic 

and biotic stresses [96], viz. salt stress, water stress, 

low and high temperatures, pathogen attack [96,97] 

and heavy metal stress [98]. These steroid com-

pounds not only function as the precursors of brassi-

nosteroids and membrane constituents but are known 

to have an essential role in plant growth and develop-

ment [99]. For example, in radish seedlings, brassino-

steroids were able to keep the membrane intact dur-

ing Cd stress, thus checking ROS production by in-

creasing levels of antioxidant enzyme activities 

[100]. 

 

5. Development of Plants from Family Brassica-

ceae Tolerant to Oxidative Stress 

Understanding of the oxidative mechanism of action 

may contribute to the development of plants most 

well adapted to the environment. The increase of 

stress tolerance of crop plants is related to the 

maintenance of high antioxidant capacity to remove 

toxic levels of ROS. Maintaining high level of anti-

oxidant enzymes will help a plant to protect itself 

against oxidative damage by rapidly scavenging the 

toxic levels of ROS in its cells and restoring redox 

homeostasis. Using transgenic approaches, several 

species were studied aiming at the improvement of 

tolerance to stress enhancing antioxidant capacity of 

antioxidant genes. Some examples of the successful 

and positive responses were obtained for Brassica-

ceae with increased tolerance to salt, drought, cold, 

heat, hydrogen peroxide, methyl viologen, and metals 

stresses (Table 1). 

Table 1. Some examples of the transgenic Brassicaceae plants with potential stress tolerance expressing anti-
oxidant genes.  

Gene Native specie Target specie 
Stress toler-
ance 

Reference 

Catalase Brassica oleracea 
Arabidopsis thali-
ana 

Heat [101] 

Catalase B. juncea Nicotiana tabacum Cadmium 
[54] 
  

Ascorbate peroxidase Hordeum vulgare 
Arabidopsis thali-
ana 

Zinc, Cadmium [102] 

Ascorbate peroxidase B. compestris 
Arabidopsis thali-
ana 

Heat [103] 

Ascorbate peroxidase 
Puccinellia tenui-
flora 

Arabidopsis thali-
ana 

Salinity, Hydro-
gen peroxide 

  
[104] 
  

Glutathione peroxidase Triticum aestivum 
Arabidopsis thali-
ana 

Salinity, Hydro-
gen peroxide 

  
[105] 

Peroxiredoxins Suaeda salsa 
Arabidopsis thali-
ana 

Salinity, Cold [106] 

Glutathione reductase B. compestris Nicotiana tabacum Methyl viologen [107] 

Ascorbate peroxidase / Superox-
ide dismutase 

Rheum austral / 
Potentilla astri-
sanguinea 

Arabidopsis thali-
ana 

  
Cold 

  
[108] 
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Plants overexpressing one or more antioxidant genes 

have more antioxidant capacity and more efficient 

ROS elimination; consequently, plants can protect 

their cellular components against toxic effects of 

ROS produced during the exposure to stress. As a 

consequence, plants suffer less oxidative injury and 

can tolerate a stress condition more effectively. Re-

cently, a numbers of transgenic plants have been de-

veloped with disposed expression of antioxidant en-

zymes that enhanced increased tolerance to salinity, 

drought, and extreme temperatures [109]. In fact, 

overexpression of Chinese cabbage (B. campestris) 

BcAPX2 and BcAPX3 in Arabidopsis enhanced seed 

germination rate and improved high temperature tol-

erance via efficient scavenging of cellular H2O2 

[110]. Notably, overexpression of a single gene could 

increase plant tolerance to different stresses such as 

the overexpression of SOD for enhancing stress toler-

ance [111]. Nevertheless, the stress tolerance can de-

velop markedly by applying the simultaneous coex-

pression of genes involved in metabolic pathways. 

For example, coexpression of B. rapa BrMDHAR and 

BrDHAR genes via hybridization conferred tolerance 

to freezing [112]. Coexpression of PaSOD and 

RaAPX genes from Potentilla atrosanguinea and 

Rheum austral, respectively, in transgenic Arabidop-

sis showed increased salt tolerance [113].  

 

6. Conclusion and future prospects 

Many research aiming to increase the tolerance of 

plants to environmental stresses using antioxidant 

genes. However, due to the complexity of the antioxi-

dant system and plant stress tolerance, it will be diffi-

cult to state that ROS scavenging is the only pathway 

that determines the level of tolerance. Furthermore, 

stresses often occur in combination; thus, the relation 

between ROS signaling mechanisms in different 

stress responses is very complex. Additionally, since 

Brassica plants are considered to be important staple 

food, it is important to understand, how different en-

vironmental factors triggering mechanisms and path-

ways affect their metabolic profile, since these will 

ultimately affect its quality, functional properties, and 

attributes such as taste and aroma, which will influ-

ence consumer acceptability. 
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