
 

WWW.SIFTDESK.ORG 1 Vol-2 Issue-1 

SIFT DESK  

Received Date: 17th  July 2017 

Accepted Date: 05th Aug  2017 

Published Date:29th Aug  2017 

Bassey, E. Bassey
* 

*Department of Mathematics /Statistics, Cross River University of Technology, 
 540252, Calabar, Nigeria,  
 
CORRESPONDING AUTHOR:  
Bassey E. Bassey 
Email: awaserex@ymail.com 
 
CONFLICTS OF INTEREST 
There are no conflicts of interest for any of the authors. 

AUTHOR: Bassey E. Bassey  August 2017 

Copy rights: © This is an Open access article distributed under the terms 

of Creative Commons Attribution 4. 0 International License.                                                

ABSTRACT 
In tackling the persistent menace of the deadly human immunodeficiency virus (HIV) and its accompanying 
acquired immunodeficiency syndrome (AIDS), some notably mathematical models have been formulated. In 
this present study, a number of compatible models were studied. The result of which led to the formulation of a 
classical 5-Dimensional delay-differential dynamic equations, principally primed with the investigation of the 
methodological application of multiple chemotherapy treatment (MCT) in the presence of delay intracellular 
and cell-mediated immune effectors response on the interplay of dual delayed HIV-pathogen infections and the 
T-lymphocytes cells. The model was presented as an optimal control problem and analyses conducted using 
classical numerical methods – Pontryagin’s minimum principle. The method demanded for the verification of 
positivity of state variables and boundedness of solution; as well as the establishment of model existence of op-
timal control pair for MCT and the system dynamic optimality solution. Using in-built Runge-Kutter of order of 
precision 4 in a Mathcad platform, the resulting analyses were subjected to numerical verification. Numerical 
simulations indicated that maximization of uninfected T-lymphocytes cells is dynamic under drug validity peri-
od. Importantly, the model established the fact that upperbounds on treatment optimal weight factors and pres-
ence of delay intracellular are crucial to the maximization of healthy CD4+ T cells, significant reduction of viri-
ons and suppression of infected CD4+ T cells. Furthermore, the rapid response of virions and infected cells to 
multiple chemotherapy treatment is emphatically attributed to the enormous role of boosted immune effectors 
response. The study therefore, advocate for a more accurate model that extensively define the role of the im-
mune effectors response. 
 

KEYWORDS: Dual-delayed-HIV-pathogen-infection, multiple-chemotherapy-treatment, immune-effectors-
response, time-delay, delay-differential-equation, optimal-control-pair, clinical-upper-bound    

 
INTRODUCTION 
The lentivirus activities of the dreaded human immunodeficiency virus (HIV) with no clear medical cure and 
which often led to acquired immunodeficiency syndrome (AIDS) has been further compounded by submerging 
new cases of parasitoid-pathogen infectivity. The situation has in the last two decades, left research scientists 
with no other option than to research for possible preventive and suppressing measures. 

The understanding of the dynamics, transmission and methodological application of chemotherapy 
treatments has been through mathematical modeling. Thus, there are quite knowledgeable and resourceful litera-
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tures on the proceedings and eradication of HIV infection. Therefore, in relation to the scope of this present 
study, we shall take precedence to those studied in relation to the present investigation. For instance, the model 
[1], investigated the problem of optimal control of HIV-infection dynamics. The paper considered and related 
this problem to that of a trajectory – tracking problem in cosmonautics, which cannot be solved without control 
theory. The investigation establishes the usefulness of application of optimal control in treatment of HIV-
infection.  

The model [2] studied the optimal control of an HIV immunology using two treatment factors reserve 
transcriptase inhibitors and protease inhibitors (RTI and PIs), without accounting for intracellular delay and the 
behavioral tendency of immune effectors response. The study focuses on the methodological and drug efficacy. 
Result showed that drugs with higher weight factor leads to early tapping off of treatment. We recommend read-
ers to find more details in [2, 4, 5, 6, 7] for optimal control problems on HIV infection, each with varying mod-
els using single treatment factor and closely related objective functional. These models were without considera-
tion for either the biological behavior of intracellular delay or the effects of immune effectors response. 

In the model [8], two optimal treatments of HIV infection was investigated. The model explored optimal 
control of drug treatment of HIV, using two controls, which measured the efficiency of RTI and PIs respective-
ly. Result showed that decrease in viral load is dependent on the amount of drug administered. The study as 
well, had ignored the implication of intracellular delay, probably with the assumption of instantaneous virus in-
fection process.  

More significantly, is the study by [9], which was formulated a set of mathematical model for the dy-
namics of HIV-1 infection with intracellular delay and cell-mediated immune response. The investigation incor-
porated both cytotoxic T-lymphocytes (CTLs) and intracellular delay into the model. In addition to the stability 
analysis explored by the model, the study investigated the positive role of CTLs in maintaining the level of 
healthy cells as well as, controlled the level of viral load. The optimization of this model led to the improved 
model by [10], which presented a delay-differential model with optimal control with the incorporation of two 
treatment controls on RTI and PIs respectively. The numerical results from the optimal treatment strategies indi-
cated reduction of viral load and increase the concentration of uninfected CD4+ T cell count. 

Basically, intracellular delay represents the definite time interval required by infected cells to replicate 
infectious virions upon viral transmission. Whereas, immune effector response is an embodiment of antibodies, 
cytokines, natural killer cells, B cells and T-lymphocytes cells responsible for the defense and attach of virus-
infected cells. Capitalizing on the above definitions and invoking models [4, 9, 10], this present paper formulate 
a mathematical model aimed at investigating the methodological application of multiple chemotherapy treatment 
(MCT) of dual delayed HIV – parasitoid pathogen infections in the presence of enhanced immune effectors re-
sponse. Therefore, the novelty of this model is the classical and comprehensive combination of multiple HIV 
treatment factors (RTI and PIs) under delay intracellular and immune effectors response, formulated as an opti-
mal control treatment of dual HIV-parasitoid pathogen. Finally, in addition to the methodological approach, the 
model focuses on the establishment of multiple- dimensional benefit of the aforementioned treatment factors in 
tackling the menace of the diverse new cases of multiple HIV infectivity. 

Explicitly, the present investigation is framed around five sections with section 1, covering the introduc-
tory aspect. Section 2 is devoted to the material and methods of the model, which accounts for the model formu-
lation with intracellular delay, as well as establishes model positivity and boundedness of solutions. The intro-
duction of optimal control strategy in the analysis of the model is presented in section 3. Covered in section 4, 
are a number of numerical illustrations and the discussion of the results that follows. Finally, we draw a succinct 
conclusion and recommendations of the study in section 5. The entire work is thought to give insight into the 
significant of optimal control to multiple chemotherapy treatment of dual HIV-parasitoid pathogen infection in 
the presence of intracellular delay and immune effectors response. 
Material and methods 

We adopt in this section, the presentation of the model formulation, designed to include dual HIV- path-
ogen virions interaction with immune system (CD4+ T cells) in the presence of multiple chemotherapy treatment 
with intracellular delay and immune effector response. Since model state variables represents living organisms, 
it becomes necessary to establish the non-negativity and also, show that the model solutions are bounded. 
Problem statement and model formulation 

In formulating the model equation and presenting the problem statement of this present study, we shall 
recall three major mathematical models, which had considered single HIV infection (the last two) with intracel-
lular delay and cell-mediated immune response [4, 9, 10]. 

From [9], the dynamics of this model is derived as: 

,  
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 ,  

, 

 , 

where and denotes the concentrations of uninfected cells, infected cells and virus and cyto-
toxic T - lymphocytes (CTLs) respectively. 

 From model (1), - represent production of susceptible cells, which die at a rate . Susceptible becomes in-

fected by viral load at the rate , while infected cells die at a rate with , representing the rate at which 

CTLs kills infected cells. Free virus is produced by infected cells at a rate and decay at a rate , with , 

as the number of free virus produced by infected cells. The activation of CTLs response is given by and decay 

in the absence of stimulus at a rate . Time taken by infected cells to produce virions (i.e. intracellular delay) is 

given as . 

 The novelty of model [10] is the introduction of two controls and , which accounted for the evaluation of 
efficiency of the treatment factors – reverse transcriptase inhibitors and protease inhibitors (RTI and PIs). This 
inclusion modified model (1) to become: 

 ,  

 , (2) 

 , 

 . 
Deducing from models (1) and (2) in formulating the model for our dual delay HIV-Pathogen infections incorpo-
rating two control measures on the multiple treatment factors, we invoke our earlier model [4], which was gov-
erned by 

     

      (3) 
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Analyzing these three models, we note that model (1), treated single infection using single treatment 

factor in the presence of intracellular delay and cell-mediated immune response.  
Also, no impose control measures on the toxicity of the drug. In model (2), observing all the parameters and con-

ditions of model (1), we incorporated two control measures and was incorporated as treatment factors. Here, 
infection was single under dual chemotherapy treatment. On the other hand, model (3) was formulated to investi-
gate dual HIV-pathogen infection, using single control measure as single treatment factor. 
 Thus, the above critical review of models (1)-(3) forms the inspirational background of this present study. 
Therefore, adopting model (3) and incorporating models (1) and (2), we formulate a novel delay differential 
equation that describe dual HIV-pathogen infection on host target cells (CD4+ T cells), distorted by two treat-
ment factors (as control measures) and which accounts for system intracellular delay and the critical functioning 

of the immune effectors response. Furthermore, by letting  denote the concentration of free pathogen and

representing the concentration of CTLs, such that the linear dependent former of is given by

, then the physiological derivation from the modifications of models (1)-(3) and 
as aided by fig. 1 below, is governed by the following equations: 

    

 (4) 

       

 ,      

  ,  

with initial conditions:  and  at and satis-
fying the biological state variables and parameter values as describe by tables (1 & 2) below. Model (4) is the 
mathematical equation of the system under consideration by this present study.  

With close affinity of model (3) and model (4), the detail description of these models can 

be deduce from that of model (4) as follows: from the first equation, the first term - define the natural 

source of uninfected CD4+ T cells differentiated respect to the invasion of external virions,  is the growth rate 

(per day) of CD4+ T cells, having a logistic term . Therefore, can never be larger than

. The magnitude of loss of infected due to and is given as  and  respectively. 

The variable die naturally at a rate , while is the infection rate in the presence of drug control 

measure .  
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 From the second equation, the terms different from that of first equation are: the product of the exponential 
term, reflecting death rate and time delay affecting the flow of infected CD4+ T cells by both viral load and par-

asitoid-pathogen. Infected T cells are cleared at the rate , of which the circle is sustained by the rate of 

virions replication and  respectively. Contributing to the elimination of infected cells is the strength of 

lytic components (CTLs) denoted by . 

 In the third and fourth equations, the term denotes the effect of control measure on PIs represented 

by and  with each having and as the death rate of free viral load and pathogen re-
spectively. Finally, the amount of immune effectors response produced by CD4+ T cells due to the rate of infec-

tion is define by , where  is the activation of response by CTLs on viral antigens. The last term, 
is the immune effectors response loss rate due to its interaction with infected cells.  
 

Fig. 1: Schematic r epresentation of dual HIV-pathogen infection with delay in-
tracellular and immune effectors response.  
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Variables 

Dependent variables 

Definition Initial values Units 

 

Uninfected T-lymphocytes cells population 0.5 cells/mm3
 

 

Infected T-lymphocytes cells population 0.1 - 

 

Infectious viral load population 0.2 mm3
 

 
Infectious pathogen population 0.1 mm3

 

 
Immune effectors response 10 mm3day-1

 

Table1: Values used forstate var iables of model (4) 

  
Parame-

ters 

Parameters and constants 

Definition Values Units 

b1 Natural source of uninfected T-lymph cells rate 0.5 cell/mm
3
.day 

 

Natural death rate of uninfected T-lymph cells 0.03 day
-1

 

 

Death rate of infected T-lymphocytes cells 0.32 day
-1

 

 

Death rate of free viral load, V 0.4 day
-1

 

 

Death rate of free parasitoid-pathogen, P 0.5 day-1
 

g Growth rate of CD4
+
 T cells 0.04 day

-1
 

 
Rate CD4

+
 T cells becomes infected by viral load,  

0.044 mm
3
virions

-1 
day

-1
 

 

Rate CD4
+
 T cells becomes infected by parasitoid-pathogen,P 0.016 mm

3
virions

-1 
day

-1
 

zv Replication rate of free viral load by infected CD4
+
 T cells 28 - 

zp Replication rate of free pathogen by infected CD4
+
 T cells 16 - 

 Optimal control measure for and   

day
-1

 

 
Optimal control measure for and  

 

day
-1

 

 
Time delay 0.5 day 

 
Immune effectors  response activation rate 0.2 mm

3
.day

-1
 

 
Rate of death of infected T-lymph cells induced by immune ef-
fectors 

0.05 mm
3
day

-1
 

 

Death rate of CTLs effectors 0.03 day
-1

 

 

Maximum level of T-lymphocytes cells population 0.8 cell/mm
3
.day 

          Table2: Summary of parameter  values for  model (4) 
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Positivity and boundedness of solution 
 
For the simple fact that the key components of model (4) are the state variables representing delay dif-

ferential equations and denoting living organisms’, it becomes necessary to verify the non-negativity of these 
state variables and also, show that the model has definite solutions.  

Suppose  be the Banach space of continuous mapping in the interval  

into  equipped with the sup-norm (topology of uniform convergence). Invoking the fundamental theory of 

functional differential equations (FDEs) from [12], there exist unique solutions
to model (4) and having initial conditions  

.    (5) 

Biologically, these initial functions and are assumed to be non-negative, i.e. 

, for .  (6) 
Then, the positivity and boundedness of solutions of model (4) with initial functions satisfying equations (5) 
and (6) is clearly established by the following theorem:  
 
Theorem 1 

 Let be the solution of model (4) satisfying conditions (5) and (6). Then

and are all non-negative and bounded for all at which the solution ex-
ists.  
 
Proof 
 Clearly, from model (4), we have  

 

                           ,  

 

         ,  

, 

   
and  
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.  
Positivity immediately follows from the above integral forms and (5) and (6). 
 For boundedness of the solution, we define  

 

and . By non-negativity of the solution, it follows that  

  

     

    

              

              . 

This implies that  is bounded and so are and . Hence, this completes the 

proof.           
 
Remark 1 It follows from Thm.1, that in addition to conditions (5) and (6):  

If either, or ,  then and are actually positive. 

The boundedness established in Thm. 1, ensures that the solution exists for all .  
Now, we verify in our next section, the inclusion of two control measures, which 

determine the efficacy of the multiple chemotherapies. This is achievable by presenting the model as an optimal 
control problem. 

 
Optimal control problems for MCT 

 From model (4), the functions and had been introduced as optimal treatment controls on the effects 
multiple drugs has on dual delay HIV-parasitoid pathogen and infected cells. Therefore, model (4) can be pre-
sented as an optimal control problem with the introduction of an objective functional that maximizes 

  (7)  
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where, the positive constants  are the “optimal weight factors” base on the optimal benefit on 

CD4+ T cells concentration and which determines drug efficacy respectively [3, 4, 6, 9]. 

It becomes obvious that our control functions and is bounded Lebesgue integrable functions. 

The control  represents the efficacy of chemotherapy in inhibiting viral load and pathogen production, 

such that replication of these virions under chemotherapy is . This implies that if , 

then infection is inhibited at 100% and if , there no infection inhibition and disease is endemic. Further-

more, the control denotes the efficacy of chemotherapy blocking new infection. Therefore, infection rate 

in the presence of chemotherapy is given as . Thus, if due to any constraint, then in-

fection is bound to be endemic. On the other hand, if  then maximal chemotherapy is used and we say that 

infection is evidently under control i.e. maximal use of chemotherapy [3, 8]. The following proposi-
tion then holds:  
 
Proposition 1 

 Assume there exist drug hazardous side effect, then, the inequality of the optimal weight factors is 

such that   holds. 
Then, following the analysis and the above proposition, we see that optimal control problem is concern with the 
maximization of uninfected CD4+ T cells concentration, maximize immune effectors response by CTLs, de-
crease/suppression of both viral load and parasitoid-pathogen, while in the process aimed at minimizing system-

ic cost. Therefore, from equation (7), we seek an optimal control pair satisfying  

   
such that 

 (8)  

where is the control set defined by 

. 

Remark 2 The introduction of optimal function defined as the optimal weight factors follows 
from the fact that the benefit on cost functional is non-linear. Hence, simple non-linear controls are introduced 
on the cost indicators [3, 4].  
 
Existence of an optimal control pair for MCT 
 From model (4), we observe that certain parameter restrictions are imposed on the model in order to ensure that 

the model is realistic. For instance, if death rate at is to be greater than the source supply rate then an as-
sumption of the form  

 (9) 
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holds. To this effect, we must have a steady state population size that should be below in order for the 
CD4+ T cells population to expand when stimulated by the dual infections. Moreso, if the population ever gets 

near  growth should slow [13].  
 Furthermore, the existence of an optimal control and uniqueness proof of the optimality system requires explicit 

upperbounds. So, using , upper bounds on the solutions of the state system are determined, thus:  

 ,      

 ,        

 ,       where   
or  

 . 

We see at once linear system in finite time with bounded coefficients, i.e. the supersolutions are uni-
formly bounded.  
 At this point, we recall the result by ([14], Thm. 4.1, pg. 68-69) for the determination of existence of an optimal 
control of our structured problem. 
 
Theorem 2  

Under proposition 1 and equation (9), there exists an optimal control pair that 

maximizes the objective functional such that   

    (10) 
 
Proof 
 Applying the result of [14] for the verification of existence of optimal control pair, we at once check that the 
following conditions are satisfied: 

The set of controls are Lebesgue-integrable in the interval and corresponding state varia-
bles is nonempty. 

The admissible control set , is convex and closed.  

The right-hand side (RHS) of the state system is continuous and bounded by a linear function of with 
coefficients depending on proposition 1, and on the state variables.  

 The integrand of the objective functional is concave on . 

There exist constants and such that the integrand of the objective  
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funtional satisfies  

 .  
 In verifying these conditions, we invoke the result of ([15], Thm. 9.2.1, pg. 182), which establishes the existence 
of solution of model (4) with bounded coefficients and satisfies condition (i). We note that the solutions are 
bounded. Then, by definition, the control set is closed and convex, which satisfies condition (ii). Since our state 

system is bilinear in , the RHS of model (4) satisfies condition (iii), using the boundedness of the so-

lutions. Moreso, the integrand of the objective functional is concave 

on the control set . Lastly, the completeness of the existence of solution is the fact that  

   

where depends on the upper bound on and with , since . Then, the proof of ex-

istence is completed.           
 
Optimal control strategy 

Here, we denote this subsection to the derivation of the necessary conditions for an 
optimal control pair with delay intracellular. Applying Pontryagin’s minimum principle with delay, we invoke 
[16], which provided necessary conditions for an optimal control problem. The principle redefined model (4), 

equations (7) and (8) into a problem of maximizing an Hamiltonian, with    

 

   

   (11) 

 .  
This leads to the following theorem. 
 
 
Theorem 3  

Given optimal controls  and solutions of the corresponding model (4), then there 

exists adjoint variables and satisfying 
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  (12)  

 

   

 

 , 

with transversality conditions . Furthermore, the optimal control is given by 

   

   

  (13)  
Proof 
 The adjoint equations and transversality conditions can be obtained by using Pontryagin’s minimum principle 
with delay in state [16] such that  

 ,   

,  

  ,   

                            ,           

, .         (14) 

The optimal controls and  can then be solved from the optimality conditions 

 ,          (15) 
That is 
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.  . (16) 

Then, by bounds in of the controls, it is easy to obtain the compact forms of and  as in equation (13) 

respectively.    
 Therefore, by definition, optimality system is an embodiment of the state system couple with the adjoint system 
with the initial and transversality conditions together with the derived optimal control pair. Thus, if we substitute 

and into model (4) and equation (12), we obtain the following optimality system: 

   

  

       

 ,      

     , 
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 , 
where 

   

   

   

with .              (17) 

 It therefore follows that the controls are dependent on the adjoints and , since those adjoints corre-

sponds to the state variables and of which the first four state equations of model (4) contains the 
terms. Finally, we leave the derivation of uniqueness of optimal control system to our readers as it can be ob-
tained by standard results in [2, 14]. On this note, our next phase is the simulations of some illustrations using 
the derived optimality control system of equation (17). 

 
Numerical simulations and discussion 

In this section, we describe a numerical method that solves the optimality system of equation (17) fol-
lowed by the discussion of the outcome.  
 
Numerical simulations 

The computer program, which involves the application of in-built Runge-Kutter of order 
of precision 4, in a Mathcad surface requires the definition of the convertible key variables and parameters. So 

that if we let combinations of weight factors  have upperbounds , for all

 in the controls, then one can generate several treatment schedules for varying time periods. For the pur-

pose of clarity, we demonstrate a case of two different values of for months of treatment sched-
ules as shown in fig. 2(a-e) and fig. 3(a-b) respectively. From fig. 2(a-e), we utilized tables (1 & 2) with the infu-

sion of and , for and .  

For all the simulations, let and , such that if 

are defined by state variable of table 1, then values for . 
 
Remark 3: It is important to note that (i) for brevity, the graphical representations of the penalty conditions 

are omitted; (ii) due to drug variation in strength, the upper bound of control is much smaller than upper 

bound of control [7], since and respectively. 
 The following simulations are then performed:  
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From fig. 2(a), observing tables (1 & 2), we investigate the concentration of uninfected T-lymphocytes cells 

population as a consequence of the application of optimal control measures on RTI depicted by  of equa-
tion (17), which subjected to intracellular delay in the presence of boosted immune effectors response

. The illustration shows significant growth in healthy CD4+ T cells following consistent 

treatment for  i.e.  increases from . Fig. 2(b) exhibits tremendous decline/
suppression of infected CD4+ T cells under similar observed conditions of fig. 2(a). Explicitly, we observe here, 

sharp decline in the early 2 months of chemotherapy i.e. and then submerged to stability 

Fig. 2(a-e) Graphical representation of MCT for  dual delayed HIV- pathogen in-
fection with immune response. 
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from the 8th month through the duration of treatment schedule i.e. . 
 In fig. 2(c), the amount of viral load concentration is observe to exhibit gradual decline following initial applica-

tion of drug with high toxicity value i.e. viral load decreases in the manner  

after 12 months. Obviously, this later value shows the stability and persistent level of viral load for
months of PIs chemotherapy. Similarly, under same condition, fig. 2(d) depicts a drastic reduction in parasitoid-

pathogen. We see declining from at  months and then attain stability 

at months with value . 
Finally, from fig. 2(e), we investigate the crucial contribution of the presence of immune effectors re-

sponse as boosted by the application of multiple chemotherapies (RTI and PIs). Obviously, the gradual decline 

of the immune effectors response from  is attributed to its active role in causing 
gradual de-replication and significant suppression of dual delayed HIV-pathogen viruses as well as the clearance 
rate factor. Intuitively, this is a clear affirmation of the fact that the amount of immune effectors response pre-
sent at any period of time is significantly dependent on the concentration of virions in the immune system. 
Therefore, the higher the virions present, the readily activation of the presence of immune effectors response. 

 Furthermore, the evaluation of systemic cost of chemotherapy administration is as depicted by figures 3
(a-b) below: 

 
 
 
 
 
 
Critical view of figures 3(a-b) shows the graphical representation of the outcome of cost benefits considered as 
systemic cost on model (4). Fig. 3(a) depicts the instantaneous increment of the application of RTI chemothera-

py under well-defined upper bound that allows reducible amount of overall use of drug i.e. , 

for months. On the other hand, due to varying strength for varying chemotherapies, fig 3(b) represent-

ing PIs chemotherapy shows that  is required for blockage and suppression of new infection replication 
and inhabitation of viral load and pathogen production. Therefore, for a dynamic system of model (4), the vary-

ing amount of PIs required for the sustainability of low level virology, is in the range of  . 
 
 

Fig. 3(a-b) Graphical simulations of optimal control pair  for  multiple chemotherapies      
 treatment with penalty conditions, L1 = 2000 and  L2 = 25  
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Discussion  
The present study had used ordinary differential equation to formulate a 5-Dimensional mathematical 

delay-differential model for the investigation of dual delay HIV-parasitoid pathogen infection. Intracellular delay 
and immune effectors response was incorporated to dual treatment factors (RTI and PIs) to investigate the bio-
logical and physiological behavioral interplay of dual HIV infectivity on the immune system (CD4+ T cells). The 
study explored classical numerical methods, which allows the application of Pontryagin’s minimum principle in 
the analysis of the optimality control system. Knowledgeable, is the imposition of optimal control measures and 
penalty conditions on treatment factors and the state variables. The conduct of numerical simulation follows suit. 
Results of the analysis as depicted by figures 2(a-e) and 3(a-b) indicated that for the application of multiple 
chemotherapeutical treatment on dual delayed HIV-pathogen infections, optimal chemotherapy is dynamic in the 
sense that treatment is adjustable over a defined period of time preferably, initiating treatment with strong dosing 
schedule. More visibly, results of simulation portrait to the fact that the benefits on cost are independent of pro-
longed drugs administration.  

Explicitly, from fig. 2(a-e), results of the numerical simulations further showed that maximization of 
uninfected CD4+ T cells concentration is a function of the clinical upperbounds on RTI and PIs as defined by

 and the critical role of boosted immune effectors response in the immune system. Vital in the slow and 
determination of the rate of infected cells is the incorporation of the delay intracellular, which allows for the con-
centration of chemotherapy when virions were still at latent stage. More satisfactorily, is the stability of both 
viral load and parasitoid-pathogen on prolong chemotherapies administration, which suggest that toxicity of 
chemotherapies are paramount at treatment set-point and therefore, suppression of infected cells is independent 
of prolonged therapy application. However, systemic cost is more visible and lessened on prolong chemotherapy 
administration.  

Furthermore, results of fig. 3(a-b), also indicated that infection rate triggers a corresponding quantity of 
immune effectors response reproduced (as defense mechanism), which kills off infected cells. More specifically, 
the drop in the level of immune effectors response were a clear indication of enhance decline in virions infection 
rate. Then, suffice to say that the present result not only agreed with notable existing studies (as contained in the 
literature) but is an enhancement of those models by [4, 9, 10]. Therefore, it is arguably accepted (as depicted by 
fig. 3(b)) that the high amount of PIs that is required were a clear indication to the fact that reduction and sup-
pression of infected cells is a function of high toxicity of PIs required early enough to cause de-replication of 
new viral load and parasitoid-pathogen viruses. 

 

CONCLUSION  
 Following the extensive analyses and modifications of a number of compactible models, this present paper using 
ordinary differential equations, formulated a 5-Dimensional delay differential equation, which accounted for the 
dynamic behavior of dual delayed HIV –pathogen infections on T-lymphocytes cells distorted by multiple chem-
otherapy treatment with the incorporation of delay intracellular and interface by immune effectors response. The 
model, which was presented as an optimal control problem, explored classical numerical methods in the analysis 
and numerical illustrations conducted. 
 The results of the simulations indicated that maximization of uninfected T-lymphocytes as a consequence of 
multiple chemotherapy application on dual delayed HIV-pathogen infectivity is a dynamic one and admissible 
within defined drugs validity time interval. Moreso, the concentration of healthy CD4+ T cells is a function of 
clinical upperbounds on RTI and PIs and the emphatic role of enhanced immune effectors response. Observably, 
the rapid decline in infected cells is arguably as a result of the introduction of delay intracellular to the model. 
 Finally, reduction in the amount of immune effectors suggests the positive response of virions to multiple 
chemotherapies and agreed to the fact that the concentration of immune effectors response present at any period 
(as defense mechanism) is dependent on the amount of virions infiltrating the immune systems at that same time 
interval. Thus, the model studied here is admirably simple and therefore, recommends extension of the investiga-
tion to incorporate a more involving model of the immune effectors response.  
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