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ABSTRACT 

Aronia melanocarpa berries procyanidins (Amps) were divided in three fractions: ethyl acetate 

phase extract of Amps (E-Amps), aqueous phase extract of Amps (W-Amps), and methanol phase 

extract of Amps (M-Amps). Flavan-3-ol monomers and oligomeric procyanidins were isolated from 

E-Amps using Sephadex LH-20 column chromatography and reversed-phase preparative HPLC. 1H 

and 13C NMR analyses indicated five flavan-3-ol monomers and oligomeric procyanidins: (+)- cate-

chin, (‒)- epicatechin, procyanidin B2 [EC-(4β→8)-EC], procyanidin B1 [EC-(4β→8)-C], and pro-

cyanidin C1 [EC-(4β→8)-EC-(4β→8)-EC]. MALDI-TOF-MS analysis demonstrated that the struc-

ture units of polymeric Amps, which were linked by B-type bonds, contained only catechin and epi-

catechin. In addition, the degree of polymerization was from pentamer to twenty-two polymer. Five 

flavan-3-ol monomers and oligomeric procyanidins had strong antioxidant activities. The DPPH and 

ABTS free-radical scavenging capacities followed the order: flavan-3-ol monomers > dimeric procy-

anidins > trimeric procyanidins > ascorbic acid. However, FRAP values increased with a degree of 

polymerization. 

 

Keywords: Aronia melanocarpa berries; Procyanidins; Structural identification; Antioxidant activi-
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1. INTRODUCTION 

Aronia melanocarpa is a member of the Rosaceae 

family, which originates from the eastern parts of 

North America and East Canada. A. melanocarpa 

shrubs are approximately 2–3 m tall (Kulling Se, 

2008; Esatbeyoglu and Winterhalter, 2010). Aronia 

berries (A. melanocarpa berries) are rich in nutrients 

that contain dietary fiber, organic acids, sugar, fat, 

protein, minerals, vitamins, and so on. Especially, the 

polyphenol contents of Aronia berries, including pro-

cyanidins, anthocyanidins, phenolic acid, and isofla-

vones, is higher than in other berries. The phenolics 

content of Aronia berries is 80–180 times more than 

that of grapes, 1,000–2,000 times more than that of 

banana, and five times as much as that of blueberries 

(Kulling Se, 2008). Research shows that Aronia ber-

ries have various physiological and pharmacological 

activities, such as anti-inflammatory and antiviral 

effects (Zapolska-Downar et al., 2012; Handeland et 

al., 2014),  prevention cardiovascular disease 

(Valcheva et al., 2007) and so on. The rich phenolic 

content of Aronia berries is responsible for many of 

their medicinal properties. Moreover, the procya-

nidins content of Aronia berries is the highest among 

other phenolic substances and plays an important role 

in physiological and pharmacological activities (Wu 

et al., 2004). The bioactivity of procyanidins is gener-

ally recognized to be largely dependent on their struc-

ture, including the degree of polymerization (DP), the 

linking type of flavan-3-ol units, and the hydroxyla-

tion of constitutive units (Sójka et al., 2013; Neilson 

et al., 2016). However, different flavan-3-ol mono-

mers can be linked into polymers from hundreds to 

thousands of molecular weights in different connec-

tion ways because of the diversity and complexity of 

the procyanidins structure. Therefore, few researchers 

have explored the specific structural information of 

each flavan-3-ol monomer and oligomeric procya-

nidin. Particularly, the structure of polymeric procya-

nidins is very complex, and thus current methods of 

isolation and purification cannot determine the specif-

ic structure information of a single procyanidin poly-

mer. 

 

“Oxidative stress” can lead to various chronic diseas-

es, such as atherosclerosis, cancer, senility. and neu-

rodegenerative diseases (Jurikova et al., 2017; Wei et 

al., 2017). Several in vitro studies have displayed the 

strong antioxidant properties of proanthocyanidins in 

rat and cell models where oxidative stress markers 

were observed to have significant reductions. Xiao-

Xin Chen et al.’s research indicated that the proantho-

cyanidins from Caryota ochlandra fruit pericarp and 

fruit flesh exhibited a stronger antioxidant activity 

and showed a comparable antioxidant activity with 

that of ascorbic acid (Chen et al., 2014). Moreover, 

the different DP of procyanidins plays an important 

role in antioxidant activity. Polymeric procyanidins 

effectively protect HepG2 cells against oxidative 

damage than oligomeric procyanidins (Kim et al., 

2013). Pei-Ling Huang et al. demonstrated that the 

antioxidant capacity of procyanidins is highly corre-

lated with their DP. The Trolox equivalent antioxi-

dant activity (TEAC) of areca nut procyanidins was 

gradually enhanced with the increase of the DP 

(Huang et al., 2010). Nevertheless, the determination 

of antioxidant capacity is based on procyanidins ex-

tract, which contains impurities or a mixture of differ-

ent DP of procyanidins. Few studies have investigat-

ed the relationship between each flavan-3-ol mono-

mers and oligomeric procyanidins of different DP 

(e.g., DP 1, DP 2, and DP 3) and their oxidative sta-

bility.  

 

In short, the aim of the present study was to investi-

gate the structure information and DP of polymeric 

procyanidins by ultraviolet/visible (UV/vis), infrared 

(IR) spectroscopy, and MALDI-TOF-MS. The specif-

ic structure of flavan-3-ol monomers and oligomeric 

procyanidins from Aronia berries were determined 

with the LC MS-IT/TOF, 1H, and 13C NMR spectra 

method. In addition, the antioxidant activities (DPPH 

and ABTS radical scavenging capacity and FRAP 

values) were explored to analyze the relationship be-

tween flavan-3-ol monomers and oligomeric procya-

nidins structure and its antioxidant activity in order to 

provide a scientific basis for developing and utilizing 

Amps further.  
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2. MATERIALS AND METHODS 

2.1 Materials and reagents 

A. melanocarpa (FukangyuanⅠ) was obtained from 

Yanbian (Jilin, China) and stored at -80 °C until used. 

HPLC grade methanol was purchased from Sigma 

(St. Louis, MO). All solvents used were of analytical 

grade unless otherwise explained. SephadexTM LH-20 

was purchased from GE Healthcare Bio-Sciences AB 

(Uppsala, Sweden), and AB-8 macroporous resin was 

provided by Yuanye Biotechnology Co. Ltd. 

(Shanghai, China). 2,2-Diphenyl-1-picrylhydrazyl 

(DPPH), 2,2′-azino-bis-(3-ethylbenzo-thiazoline-6-

sulphonic acid) diammonium salt (ABTS), and 2,4,6-

tri (2-pyridyl)-1,3,5-triazine (TPTZ) were purchased 

from Sigma-Aldrich (St. Louis, MO, USA). 

 

2.2 extract and purification of Amps 

Frozen Aronia berries (10 kg) were crushed using a 

beater for 3 min. Then, materials were extracted with 

a 13:7 (v/v) ethanol/water solution at 65 °C for 60 

min (simultaneous with 20 min ultrasonic extraction). 

The solution was centrifuged at 4000 r/min for 20 

min. The supernatant was collected, and ethanol was 

removed from the supernatant through rotatory evap-

oration under vacuum at 60 °C. The crude extract of 

Amps was freeze-dried and stored at -80°C. Then, the 

crude extract of Amps was purified by AB-8 

macroporous resin according to previous studies (Yue 

and Fen Mei, 2017), and the purified extract of Amps 

was lyophilized.  

 

2.3 Separation and preparation of Amps 

To separate procyanidins, the purified extract of 

Amps (95.00 g) was dissolved in water, and the insol-

uble fraction can be dissolved in 95:5 (v/v) methanol‒

water solution. Ethyl acetate was applied to extract 

oligomeric procyanidins from the water phase extract 

of Amps. Subsequently, ethyl acetate, water, and 

methanol were removed by rotatory evaporation un-

der vacuum at 60 °C. The three fractions were freeze-

dried and stored at -80 °C. Therefore, the purification 

of Amps was divided into three fractions: ethyl ace-

tate phase extract of Amps (E-Amps, 3.15 g), aqueous 

phase extract of Amps (W-Amps, 48.69 g), and meth-

Figure 1. Structures of the flavan-3-ol units in proanthocyanidins (A); Procyanidin B1 [EC-(4β→8)-C] (B); 
Procyanidin B2 [EC-(4β→8)-EC] (C); Procyanidin C1 [EC-(4β→8)-EC- (4β→8)-EC ] (D) 

Flavan-3-ol units R1 R2 R3 R4 R5 

Catechin OH OH H H OH 

Epicatechin OH OH H OH H 

Afzelechin H OH H H OH 

Epiafzelechin H OH H OH H 

Gallocatechin OH OH OH H OH 

Epigallocatechin OH OH OH OH H 
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anol phase extract of Amps (M-Amps, 28.23 g). E-

Amps (3.00 g) were separated by a Sephadex LH-20 

column using stepwise gradient elution with metha-

nol‒water (30:70 v/v, 400 mL) and methanol‒water 

(50: 50 v/v, 400 mL) to remove sugars, glycosides, 

quercetin, and others flavonoid, followed by elution 

with methanol‒water (80: 20 v/v, 400 mL), methanol

‒water (95:5 v/v, 200 mL), and acetone‒water (70:30 

v/v, 200 mL) to collect the three fractions (E1, E2, 

and E3, respectively). The three fractions were freeze

-dried and used for further isolation by preparative 

HPLC. 

 

A preparative SIMADZU HPLC system was used to 

isolate flavan-3-ol monomers and oligomeric procya-

nidins from E-Amps fractions E1, E2, and E3. The 

equipment consisted of a LC-6AD HPLC pump, a 

SPD-10A with preparative flow cell, a prominence 

SPD-20A PDA detector, a LC-20A manual injector 

(2 mL), a FRC-10A fraction collector, and the Labso-

lutions software. The following preparative HPLC 

columns YMC (26 mm × 250 mm, Kyoto, Japan) 

was adopted for preparing five fractions (1, 2, 3, 4, 

5). Water (solvent A) and methanol (solvent B) were 

used as solvent systems. The flow rate was 5.5 mL/

min, and the injection volume for samples was 2 mL. 

The isometric elution method was utilized to prepare 

five fractions with the following parameters: 1 and 2 

compounds: 0‒40 min, 30% B; 3 and 4 compounds: 0

‒160 min, 30% B; 5 compound: 0‒120 min, 40% B. 

The W-Amps and M-Amps fractions (10.00 g, re-

spectively) were also separated by a Sephadex LH-20 

column and were eluted by methanol‒water (50:50 v/

v, 600 mL), methanol‒water (80:20 v/v, 600 mL), 

and acetone‒water (70:30 v/v, 300 mL), and the ace-

tone‒water (70 : 30, v/v) elution fractions were col-

lected. Then, acetone was removed, and the sample 

solutions were freeze-dried to obtain W1 (3.93 g) and 

M1 (2.05 g) fractions.  

 

2.4 Characterization and structure analysis of 

Amps 

2.4.1 Spectroscopy analysis of Amps 

E-Amps, W-Amps and M-Amps were characterized 

using UV-vis and FT-IR. The UV-vis spectra were 

determined using a UV-6100S spectrophotometer 

(Metash Limited Company, Shanghai) fitted with a 

quartz cell between 250 and 900 nm. A PerkinElmer 

SpectrumTM Spectrum 100D FT-IR spectrophotome-

ter was used to record the KBr samples of E-Amps, 

W-Amps and M-Amps. The spectra were scanned 

between 4000 and 400 cm–1 and then recorded in the 

transmission mode. The structure of Amps was also 

identified by 1H and 13C NMR spectroscopy. The 1H 

and 13C NMR spectra of the separated Amps in 

DMSO-d6 were recorded at 500 MHz using a Bruker 

AVANCE Ⅲ HD spectrometer. 

 

2.4.2 LC-IT-TOF/MS/MS analysis of Amps 

LC-IT-TOF/MS/MS analyses were performed with a 

SIMADZU LC-IT-TOF/MS/MS system (SIMADZU, 

Japan) in conjunction with an Agilent Eclipse XDB-

C18 (4.6 mm × 250 mm, Agilent Technologies, Inc. 

America). Gradient elution was carried out as fol-

lows: 0‒10 min 10%‒30% B; 10‒20 min 30%‒70% 

B; 20‒30 min 70%‒100% B (A: 0.1 % aqueous for-

mic acid, B: methanol). The flow rate was 1 mL/min, 

and the detection wavelength was 280 nm. In addi-

tion, the parameters of mass spectrometric analysis 

were as follows. The negative-ion mode for MS and 

MS/MS was set, and the spectra were scanned over a 

mass range of 100‒1500 m/z. The ion spray voltage 

was 5 kV, the drying gas temperature was 350 ℃, the 

capillary voltage was 3.5 kV, and the gas flow was 

50 L/h. 

 

2.4.3 MALDI-TOF MS analysis of Amps  

MALDI-TOF MS was utilized to determine the struc-

tural information of W1 and M1. MALDI-TOF MS 

spectra were recorded on a Bruker Autoflex III in-

strument (Germany) and obtained according to the 

method of Zhang et al. (Zhang and Lin, 2008). 2,5- 

Dihydroxybenzoic acid (DHB) was selected as the 

matrix, and CS+ (Cesium chloride aqueous solution, 

1.5 mg/mL) was applied as the cationization reagent. 

 

2.5 Antioxidant activity analysis 

2.5.1 DPPH assay 

The DPPH radical scavenging capacities of flavan-3-

ol monomers and oligomeric procyanidins were de-

termined in accordance with the report of Brand-

Williams et al. (Brand-Williams et al., 1995) with 
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some modifications. Briefly, the DPPH solution (0.02 

g) was diluted with methanol to 0.50 mmoL/L. Then, 

0.50 mL of the sample solution (0.10 mg/mL, 0.13 

mg/mL, 0.15 mg/mL, 0.20 mg/mL, 0.25 mg/mL) was 

added to 3.00 mL of the DPPH solution, and the reac-

tion mixture was placed at room temperature for 30 

min. Subsequently, the absorbance was measured at 

517 nm and with methanol as a blank reference. The 

scavenging capacity was calculated based on the fol-

lowing equation: 

Scavenging rate % = [(AM−AS)/AM] × 100 

where AM is the absorbance in the of blank reference 

and AS represents the absorbance after 30 min of re-

action time. 

 

2.5.2 FRAP assay of Amp   

FRAP assay was carried out with the method de-

scribed by Benzie and Strain (Benzie and Strain, 

1996) with slight modifications. The principle of this 

method is that Fe3+ - tripyridyl triazine (TPTZ) can be 

reduced to form Fe2+-TPTZ by the reductive sub-

stance in the sample, showing a blue color. The maxi-

mum absorbance was measured at 593 nm, and the 

capacity of the antioxidant activity was calculated 

according to the size of the absorbance. FeSO4 was 

used as the standard substance to draw standard 

curves. The antioxidant capacity of the sample, which 

was equivalent to the number of mmol/L of FeSO4, 

was indicated by the FRAP values. The FRAP work-

ing solution (6.00 mL), which was composed of a 

sodium acetate buffer (300.00 mmol/L 25.00 mL), a 

TPTZ solution (10.00 mmol/L 2.50 mL), and a FeCl3 

solution (20.00 mmol/L 2.50 mL), and the sample 

solution (10.00 mg/mL, 200 μL) were mixed and re-

acted for 10 min at room temperature. The wave-

length for the detection was 593 nm. All measure-

ments were taken in triplicate.  

 

2.5. 3 ABTS assay of Amps 

ABTS assay was performed according to a previously 

reported method by Zhang and Zhou et al. (Zhang et 

al., 2016). ABTS+ free radical was prepared as fol-

lows: an ABTS solution (5.00 ml 7.00 mmol/l) and a 

potassium persulfate solution (88 μl 2.60 mmol/l) 

were mixed and stored at room temperature for 16–18 

h in the dark. Then, it was diluted with an ethanol/

water solution (80:20 v/v) to obtain the ABTS+ work-

ing solution until its absorbance value was 0.7±0.05 

at 734 nm. Trolox was used as the standard substance 

to draw the standard curves. The concentrations of the 

Trolox solutions were 100, 200, 250, 400, and 500 

μmol/L. The different samples and the Trolox solu-

tions (80 μL) were added to the diluted ABTS+ work-

ing solution (4.00 mL). The mixture solution was kept 

for 6 min at room temperature, and the absorbance 

values were detected at 734 nm. The antioxidant ca-

pacity of the sample was equivalent to the number of 

mmol /L of Trolox. 

 

2.6 Statistical analysis  

Statistical analyses were performed using Origin 9.0 

version and the data of bioactive assays are presented 

as the mean ± standard deviation (SD) of three times 

repetition for each sample. Significance of differences 

was determined by using the Duncan’ s multiple 

range test. Statistically significant differences were 

set at P < 0.05. 

 

3 RESULTS AND DISCUSSION 

3.1 Procyanidins profile of A. Melanocarpa   

The crude extract of Amps was performed with an 

ethanol/water solution (13:7, v/v) from frozen Aronia 

berries. The Amps content of the crude extract was 

136.67 ± 6.64 mg/g (crude extract). After purification 

with AB-8 macroporous resin, the Amps content of 

the purified extract was 553.14 ± 4.60 mg/g (purified 

extract), which was four times that of the crude ex-

tract of Amps. According to previous studies by Jark-

ko K. et al., the procyanidins content of A. Melano-

carpa is the highest among 99 other analyzed food 

items (Hellstrom et al., 2009). Our experimental re-

sults also proved this conclusion.    

 

Table 1 shows that the highest yield of aqueous phase 

extract was 51.25%, and the highest purity of W-

Amps was 35.20%. The ethyl acetate extract had the 

lowest yield of approximately 3.31%, which was also 

the lowest purity of Amps (5.50%). The yield of the 

methanol phase extract and the purity of M-Amps 

were higher than the ethyl acetate extract and the pu-

rity of E-Amps. The results demonstrated that the 

content of W-Amps was higher than that of M-Amps, 
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and that of E-Amps was the lowest. Meanwhile, Ta-

ble 1 shows that the average mDP (average DP) of E-

Amps, W-Amps and M-Amps were 2.59, 9.12, and 

14.66, respectively. This result indicated that flavan-

3-ol monomers and oligomeric procyanidins existed 

in the ethyl acetate extract and polymeric procya-

nidins were left in the aqueous and methanol phase 

extracts. Furthermore, the flavan-3-ol monomers and 

oligomeric procyanidins contents were low in Aronia 

berries and there was a high content of polymeric 

procyanidins that existed in the aqueous and metha-

nol phase extracts. The mDP of Amps is higher than 

the mDP of grape seed (6.4–7.3), cocoa (13.9), and 

brown sorghum bran (13.5), but less than the mDP of 

Areca catechu L. (17.5), grape skin (33.8–85.7), and 

lowbush blueberry (38.8) (Huang et al., 2010). Some 

studies have shown that ethyl acetate can be used to 

extract flavan-3-ol monomers and oligomeric procya-

nidins (Bicker et al., 2009; Sui et al., 2016). There-

fore, the polymeric procyanidins were left in the 

aqueous and methanol phases. The experimental re-

sults indicated that flavan-3-ol monomers and oligo-

meric procyanidins were extracted by ethyl acetate, 

while many other low molecular substances were 

extracted by ethyl acetate, resulting in the low purity 

of Amps in the ester phase extract.   

 

Table 1 E-Amps, W-Amps and M-Amps profiles of 

Aronia Melanocarpa 

 

3.2 UV/vis and FT-IR analysis  

The UV/vis spectra showed (Figure 2) that E-Amps, 

W-Amps and M-Amps had the maximum absorption 

wavelength at 280 nm, which is a typical spectral 

characteristic of procyanidins (Thompson et al., 

1972; Fu et al., 2015; Fu and Yang, 2015).  

 

The E-Amps, W-Amps and M-Amps were also ana-

lyzed by FTIR. The infrared spectrograms of the 

three fractions are shown in Figure 3. The specific 

infrared spectral data are summarized in Table 2. 

Specifically, the bands at 3399 cm−1, 3411 cm−1, and 

3400 cm−1 corresponded to the –OH stretch vibration; 

the band at 2974 cm−1 was assigned to the –C–H 

stretching vibration (Ping et al., 2012); the bands at 

1384 cm−1 and 1381 cm−1 corresponded to the –C–

OH deformation vibrations (Jing, 2014); the strong 

absorption bands at 1631, 1610, 1608, 1519, 1518, 

1517, 1449, 1443, and 1443 cm−1 were attributed to 

the aromatic structure of the three fractions; and the 

bands at 1088, 1074, 1085, and 1065 cm−1 were as-

signed to the C–O–C stretching vibration (Fu and 

Yang, 2015). The bands at 804, 798, and 795 cm−1 

and at 1049, 1047, and 1045 cm−1 were assigned to 

the CH out of-plane deformation and the C–C 

stretching vibration, respectively. The bands at 820 

cm−1 were due to the 1, 2, 4-three substituted aro-

matic structure. The peaks at 880, 878, and 877 cm−1 

corresponded to the aromatic ring C–H in-plane de-

formation. 

 

Generally, polymers mainly of the procyanidins type 

shows a single peak at 1540–1520 cm-1 in the infra-

red spectra, whereas that of the prodelphinidins type 

shows a double peak. If procyanidins and prodel-

phinidins account for 50% respectively, it still shows 

a single peak. However, the bands are widened. Simi-

larly, it shows an absorption peak at 770–780 cm-1 in 

the infrared spectra, with polymers mainly of the pro-

cyanidins type; otherwise, the result indicates poly-

mers mainly of the prodelphinidins type (Foo, 1981). 

The comparison of the infrared spectra of the E-

Amps, W-Amps and M-Amps indicates that three 

fractions showed a single peak at 1520–1540 cm-1, an 

absorption peak at 770–780 cm-1, and no absorption 

peak at 730 cm-1. Therefore, the E-Amps, W-Amps 

and M-Amps were polymers mainly of the procya-

nidins type. Given their high oligomeric procyanidins 

contents, E-Amps had strong absorption peaks at 

2920 cm-1 and 1150 cm-1 in the infrared spectrum. 

The absence of a peak at 1710 cm−1 demonstrated 

that the Amps did not contain a galloyl group (Fu et 

al., 2015). 

The frac-
tions of 
Amps 

Yield (%) Average DP of 
Amps 

Purity of 
Amps (%) 

Ethyl acetate 
extract 3.31 2.59 5.50 

Aqueous phase 
extract 51.25 9.12 35.20 

Methanol phase 
extract 29.72 14.66 18.15 
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Figure 2. UV/vis of E-Amps, W-Amps and M-Amps 

 

Figure 3. FT-IR spectrum of E-Amps, W-Amps and 

M-Amps  

Table 2. Assignment of FT-IR spectra of E-Amps, W-Amps and M-Amps 

Assignment 
Peak of E-Amps

（cm-1） 

Peak of W-Amps（cm
-1） 

Peak of M-Amps（cm-

1） 

–OH stretch vibration 3399 3411 3400 

–C–H stretching vibration 2974 2974 2974 

Aromatic 

ring structure 

1631, 1517, 

1449 

1610, 1519, 

1444 

1608, 1518, 

1443 

–C–OH deformation vibrations 1384 1384 1381 

C–O–C stretching vibration 1088 1074 1085, 1065 

C–C stretching vibration 1049 1047 1045 

Aromatic ring C–H 

in-plane deformation 
880 878 877 

1, 2, 4-three substituted 

aromatic ring structure 
820 820 820 

CH outof- 

plane deformation 
804 798 795 

3.3 MALDI-TOF MS analysis 

The comparison of other soft ionization techniques 

indicated that MALDI-TOF MS has been widely 

used in determining the molecular weight of poly-

mers in recent years. The advantage of MALDI -TOF  

 

MS is that it can rapidly and accurately measure mo-

lecular weight by producing less fragment ions for 

polymers analysis, without the need for reference 

standards. In addition, extreme sensitivity is also ad-

vantageous for the techniques (Kang et al., 2017). 
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Therefore, MALDI-TOF MS is a powerful tool for 

analyzing the structure and molecular weight of poly-

meric procyanidins (Chai et al., 2012; Chai et al., 

2017).  

In our experiment, DHB was used as the matrix. The 

natural existence of K+ and Na+ interfere with the 

analysis of the proanthocyanidins hydroxyl pattern. 

Thus, CS+ is often used in ionizing reagents. Accord-

ing to the study of Van Huynh et al. (Van Huynh and 

Bevington, 2014), the following equation can be es-

tablished:  

[M＋Cs]
＋ ＝  2＋288a＋304b＋272c＋152d－2e＋133  

where a, b, and c represent C/EC, GC/EGC, and Afz/

EAfz, respectively. d is the galloyl group number, e 

is the A-type interflavan bond number, and 133 and 2 

are the molecular weights of cesium and the two ends 

H (Chen et al., 2014; Fu et al., 2015). Figure 4 shows 

the MALDI-TOF mass spectra of W1 and M1. W1 

has a DP from pentamer to 19 polymeric procya-

nidins. The DP from 14 to 22 polymeric procyanidins 

were found in M1. The MALDI-TOF-MS results fur-

ther illustrated that W-Amps and M-Amps contain 

polymeric procyanidins, and the DP of procyanidins 

in M-Amps was higher than that of W-Amps. The 

difference between each adjacent polymer was 288 

Da, which was the extension unit of the C/EC. More-

over, the no split sub-peaks with distances of 152 Da 

and 16 Da indicated that the absence of a galloyl 

group at the heterocyclic C-ring and prodelphinidins 

in the Amps. The proanthocyanidins type of Aronia 

berries was composed of procyanidins and not 

prodelphinidins and propelargonidins. Meanwhile, no 

series of distances between the two peaks were 2 Da 

multiples lower than the described peaks. Thus, we 

can infer that all units of procyanidins were linked by 

B-type bonds in Aronia berries. Therefore, the DP of 

Amps was from pentamer to 22 polymers, and the 

structure units of Amps, which contained only cate-

chin and epicatechin, were linked by B-type bonds. 

Figure 4. MALDI-TOF mass spectra of Aronia Mel-

anocarpa berries proanthocyanidins (Amps) : W-

Amps (A), M-Amps (B), MALDI-TOF MS recorded 

in the [M + Cs]+ mode. DP: degree of polymeriza-

tion.  

 

3.4 LC-IT-TOF/MS/MS analysis 

LC-MS is an effective method for identifying the 

structure of procyanidins. NP−HPLC can separate 

procyanidins through the DP, and it could not sepa-

rate procyanidins isomers. However, RP-HPLC can 

separate the isomers of procyanidins; it has a weak 

capacity for isolating the procyanidins of the four 

polymers above (Natsume et al., 2000). Given that 

the E-Amps mainly contains flavan-3-ol monomers 

and oligomeric procyanidins and their isomers, RP-
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HPLC was used to separate E-Amps in our experi-

ment. Then, LC-IT-TOF/MS/MS analysis was first 

performed in the negative ion mode to study the de-

rived E-1, E-2, and E-3. In the MS2 spectra, dimeric 

and trimeric procyanidins were proposed to include 

three fragmentation pathways. 1) Retro Diels-Alder 

(RDA) reactions may be the most important fragmen-

tation for elucidating the structural information of 

dimers (Friedrich et al., 2000). m/z 425 ([M-C8H8O4-

H]-) and m/z 407 ([M-C8H8O4-H2O-H]-) are often 

detected in the MS2 spectrum because of the RDA 

reactions, and m/z 407 has been detected in signifi-

cant amounts, which are even greater than m/z = 425. 

2) Cleavage of the interflavanoid linkage. The inter-

flavonoid bond cleavage produces fragment ions m/z 

289 ([M-CAT-H]-) and m/z 577 ([M-2CAT-H]-) for 

dimers and timers. 3) Heterocyclic ring fission (HRF) 

mechanisms. The fragment ion of the dimers and tim-

ers at m/z 451 ([M-C6H6O3-H]-) indicates HRF, 

which is obtained to eliminate the phloroglucinol 

molecule () (Karonen et al., 2004). 

 

Amps was divided into three components (E-1, E-2 

and E-3) by Sephadex LH-20. When the samples 

were separated by Sephadex LH-20, the procyanidins 

were eluded in the order of gradually increasing mo-

lecular weight (Ismayati et al., 2017). Figure 5 and 

Table 3 show that the two flavan-3-ol monomers, 1 

and 2, were detected in component E-1, and the re-

tention times were 11.17 min and 16.87 min, respec-

tively. Two flavan-3-ol monomers were identified 

with m/z product ions [M-H]- 289. The possible sub-

stances were (+) -catechin and (-) -epicatechin, which 

must be further determined to ascertain the specific 

structure by NMR. A flavan-3-ol monomer (m/z [M-

H]- 289) and two dimeric procyanidins (m/z [M-H]- 

577) were detected in E-2, which indicated that they 

were B-type procyanidins formed with two (E)C 

units. The two dimeric procyanidins MS2 spectra 

showed fragment ions with m/z 251, 301, and 407 

and 245, 281, 289, 407, and 559, respectively. The 

fragment ions of m/z 407 and m/z 289 indicated the 

dimeric procyanidins resulted in RDA reactions and 

the cleavage of the interflavanoid linkage. A trimer 

procyanidins (m/z [M-H]- 865) was detected in E-3. 

The peak time was 15.19 min, and MS2 spectra de-

tected m/z 289, m/z 407, and m/z 695, which demon-

strated that the trimer procyanidins resulted in RDA 

reactions and the cleavage of the interflavanoid link-

age such as trimeric procyanidins. Through the RP-

HPLC-MS analysis, we can summarize that the pro-

cyanidins of Aronia berries contain two flavan-3-ol 

monomers, two dimeric, and one trimeric procya-

nidins. Given that B-type procyanidins dimers and 

timers have the same molecular mass and similar 

fragment ions, the specific structure information of 

each dimeric and trimeric procyanidins cannot be 

confirmed by mass spectrometry. Therefore, the pro-

cyanidins were collected by the preparative HPLC, 

and the specific structure information of each mono-

mer was determined by NMR. 

Figure 5. Reversed phase high-performance liquid 
chromatography (RP-HPLC) analysis (detected at 
280 nm) four fractions (E1, E2, E3) of E-Amps sepa-
rated with stepwise gradient by Sephadex LH-20. 
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3.5 NMR analysis 

3.5.1 (+)- Catechin [C]  

Compound 1 was obtained as a yellow amorphous 

powder. IT/TOF MS gave [M–H]- at m/z 289. 1H 

NMR (500 MHz, DMSO): δH 4.48 (1H, d, J=9.5 Hz, 

H-2), 3.82 (1H, m, H-3), 2.26 (1H, dd, J=6.5, 20 Hz, 

H-4a), 2.51 (1H, m, H-4b), 5.89 (1H, brs, H-6), 5.69 

(1H, brs, H-8), 6.73 (1H, d, J=2.5 Hz, H-2’), 6.79 

(1H, d, J=8.05 Hz, H-5’), 6.60 (1H, dd, J=2.5, 10 Hz, 

H-6’). 13C NMR (500 MHz, DMSO): δC 81.47 (C-2), 

66.77 (C-3), 28.34 (C-4), 99.51 (C-4a), 155.82 (C-5), 

95.56 (C-6), 156.63 (C-7), 94.29 (C-8), 156.92 (C-

8a), 131.06 (C-1’), 114.99 (C-2’), 145.30 (C-3’), 

145.30 (C-4’), 115.52 (C-5’), 118.87 (C-6’). The 1H 

and 13C NMR spectral data were agreement with 

those of TIMO STARK et al.(Stark et al., 2005).   

 

3.5.2 (‒)- Epicatechin [EC] 

Compound 2 was obtained as a yellow amorphous 

powder. IT/TOF MS gave [M–H]- at m/z 289. 1H 

NMR (500 MHz, DMSO): δH 4.48 (1H, d, J=2.5 Hz, 

H-2), 4.02 (1H, m, H-3), 2.69 (1H, dd, J=5.5, 20.5 

Hz, H-4a), 2.51 (1H, m, H-4b), 5.90 (1H, d, J=3 Hz, 

H-6), 5.73 (1H, J=3 Hz, H-8), 6.90 (1H, brs, H-2’), 

6.79 (1H, d, J=8.1 Hz, H-5’), 6.60 (1H, m, H-6’). 13C 

NMR (500 MHz, DMSO): δC 78.53 (C-2), 65.38 (C-

3), 28.67 (C-4), 99.96 (C-4a), 156.24 (C-5), 95.54 (C

-6), 156.70 (C-7), 94.55 (C-8), 156.99 (C-8a), 131.08 

(C-1’), 115.22 (C-2’), 144.91 (C-3’), 144.97 (C-4’), 

115.36 (C-5’), 118.42 (C-6’). The 1H and 13C NMR 

spectral data were agreement with those of J. Bicker 

et al.(Bicker et al., 2009).   

 

3.5.3 Procyanidin B2 [EC-(4β→8)-EC]  

Compound 3 was obtained as a deep yellow amor-

phous powder. IT/TOF MS gave [M–H]- at m/z 577. 
1H NMR (500 MHz, DMSO), upper unit: δH 4.29-

4.35 (2H, m, H-2, H-4), 3.64 (1H, d, J=5 Hz, H-3), 

6.80 (2H, brs, H-5’, H-2’); Terminal unit: δH 4.45 

(1H, s, H-2), 3.45 (1H, q, J=10 Hz, H-3), 2.58 (1H, d, 

J=20 Hz, H-4a), 2.71 (1H, dd, J=20, 5.5 Hz, H-4b), 

6.52 (1H, d, J=10 Hz, H-6’’), 7.00 (1H, s, H-5’’). 

5.72-5.82 (3H, m, 2H-6, 1H-8), 6.63 (2H, t, J=12 Hz, 

H-6’, H-2’’). 13C NMR (500 MHz, DMSO),upper 

unit: δC 75.83 (C-2), 71.92 (C-3), 36.11 (C-4), 102.36 

(C-4a), 156.35 (C-5), 96.28 (C-6), 157.03 (C-7), 

94.23 (C-8), 157.07 (C-8a), 131.69 (C-1’), 115.35 (C

-2’), 145.05 (C-3’), 144.69 (C-4’), 115.18 (C-5’), 

118.22 (C-6’); Terminal unit: δC 77.98 (C-2), 65.13 

(C-3), 28.04 (C-4), 99.20 (C-4a), 154.93 (C-5), 95.05 

(C-6), 154.33 (C-7), 107.57 (C-8), 153.39 (C-8a), 

130.75 (C-1’), 115.35 (C-2’), 144.78 (C-3’), 144.50 

(C-4’), 114.90 (C-5’), 118.22 (C-6’). The 1H and 13C 

NMR spectral data were agreement with those of F. 

Khallouki et al.(Khallouki et al., 2007).  

 

3.5.4 Procyanidin B1 [EC-(4β→8)-C] 

Compound 4 was obtained as a deep yellow amor-

phous powder. IT/TOF MS gave [M–H]- at m/z 577. 
1H NMR (500 MHz, DMSO), upper unit: δH 4.29-

4.41 (2H, m, H-2, H-4), 3.61 (1H, m, H-3), 6.63 (2H, 

brs, H-5’, H-2’); Terminal unit: δH 5.02 (1H, s, H-2), 

3.44 (1H, dd, J=5,15 Hz, H-3), 2.5 (2H, m, H-4a, H-

4b), 6.53 (1H, d, J=10 Hz, H-6’’), 6.75 (1H, s, H-

5’’). 5.70-5.79 (3H, m, 2H-6, 1H-8), 6.8 (2H, s, H-6’, 

H-2’’). 13C NMR (500 MHz, DMSO),upper unit: δC 

75.88 (C-2), 71.64 (C-3), 35.72 (C-4), 102.60 (C-4a), 

156.19 (C-5), 96.14 (C-6), 156.95 (C-7), 94.15 (C-8), 

157.05 (C-8a), 131.84 (C-1’), 115.30 (C-2’), 145.13 

(C-3’), 144.83 (C-4’), 115.61 (C-5’), 118.17 (C-6’); 

Table 3.  LC-IT-TOF/MS/MS data of E1, E2 and E3 

Peak RT (min) [M-H]
— 

(m/z) Product ions (m/z) mDP of procyanidins 

1 11.17 289 203, 821 monomer E(C) 

2 16.87 289 151, 179 monomer E(C) 

3 14.07 577 251, 301, 407 dimer E(C)-E(C) 

4 21.09 577 245, 281, 289, 407, 559 dimer E(C)-E(C) 

5 15.19 865 289, 407, 695 trimer E(C)-E(C)-E(C) 
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Terminal unit: δC 80.55 (C-2), 66.48 (C-3), 26.58 (C-

4), 99.01 (C-4a), 154.91 (C-5), 94.96 (C-6), 154.12 

(C-7), 107.57 (C-8), 153.01 (C-8a), 131.57 (C-1’), 

115.19 (C-2’), 145.04 (C-3’), 144.64 (C-4’), 114.10 

(C-5’), 118.17 (C-6’). The 1H and 13C NMR spectral 

data were consistent with those of Tuba Esatbeyoglu 

et al.(Esatbeyoglu et al., 2011).  

 

3.5.5 Procyanidin C1 [EC-(4β→8)-EC- (4β→8)-

EC ] 

Compound 5 was obtained as a deep yellow amor-

phous powder. IT/TOF MS gave [M–H]- at m/z 865. 
1H NMR (500 MHz, DMSO), upper unit: δH 5.02 

(1H, s, H-2), 4.42 (1H, brs, H-3), 5.83 (2H, s, H-6, H-

8), 6.84 (1H, s, H-2’), 6.64 (2H, m, H-5’, H-6’); Mid-

dle unit: δH 4.94 (1H, s, H-2), 4.15 (1H, brs, H-3), 

6.90 (1H, s, H-2’), 6.66 (1H, m, H-5’), 6.55 (1H, d, 

J=10 Hz, H-6’); Terminal unit: δH 4.70 (1H, d, J=5 

Hz, H-2), 3.45 (1H, m, H-3), 2.45 (1H, dd, J=3.5, 20 

Hz, H-4a), 2.75 (1H, m, H-4b), 7.04 (1H, s, H-2’), 

6.73 (1H, d, J=10 Hz, H-5’), 6.82 (1H, m, H-6’). 4.55 

(2H, d, J=5 Hz, H4), 5.76 (2H, s, H6). 13C NMR (500 

MHz, DMSO), upper unit: δC 77.96 (C-2), 70.98 (C-

3), 28.37 (C-4), 99.39 (C-4a), 156.38 (C-5), 96.43 (C

-6), 156.43 (C-7), 106.86 (C-8), 154.49 (C-8a), 

131.55 (C-1’), 114.83 (C-2’), 145.03 (C-3’), 144.58 

(C-4’), 115.54 (C-5’), 118.07 (C-6’); Middle unit: δC 

75.82 (C-2), 71.01 (C-3), 36.30 (C-4), 99.64 (C-4a), 

154.95 (C-5), 96.38 (C-6), 156.98 (C-7), 106.84 (C-

8), 154.83 (C-8a), 131.80 (C-1’), 114.83 (C-2’), 

145.03 (C-3’), 144.50 (C-4’), 115.43 (C-5’), 118.03 

(C-6’). Terminal unit: δC 75.82 (C-2), 71.88 (C-3), 

35.93 (C-4), 99.44 (C-4a), 157.06 (C-5), 96.03 (C-6), 

157.09 (C-7), 95.22 (C-8), 157.03 (C-8a), 130.90 (C-

1’), 114.83 (C-2’), 144.88 (C-3’), 144.39 (C-4’), 

115.24 (C-5’), 118.08 (C-6’). The 1H and 13C NMR 

spectral data were consistent with those of Chiaki Ito 

et al.(Ito et al., 2013).  

 

3.6 Antioxidant activities of Amps 

Several studies have shown that the procyanidins 

from many plant sources, including Chinese haw-

thorn (Chai et al., 2014), indigenous cinnamon (Lin 

et al., 2016) and Ficus altissima leaves (Deng et al., 

2016), were tested by antioxidant activities assays. 

Previous studies also found that in different antioxi-

dant experiments, the antioxidant capacity is quite 

discrepant due to the different DP of procyanidins. 

Antioxidant effectiveness cannot be simply attributed 

to the ability of donating hydrogen via phenolic hy-

droxyls (Plumb et al., 1998). Some studies have 

shown that antioxidant activity is enhanced with the 

increasing DP. However, some studies have drawn 

the opposite conclusion (Santos Buelga and Scalbert, 

2000). In addition, Nicole Darmon et al. reported that 

the antioxidant capacity of procyanidins shows no 

difference between monomers, dimers and trimers 

(Silva et al., 1991). To explore the antioxidant activi-

ty with different DP, we measured the FRAP, DPPH, 

and ABTS radical scavenging activities of procya-

nidins from Aronia berries. 

 

Figures 6 (A, B) show that five compounds (1, 2, 3, 

4, 5) could eliminate DPPH and ABTS free radicals 

in a dose-dependent manner. The flavan-3-ol mono-

mers (catechin and epicatechin) had a higher DPPH 

free radical scavenging capacity than the dimeric pro-

cyanidins (procyanidin B1, B2) and the trimeric pro-

cyanidin (procyanidin C1) at 0.1–0.15 mg/mL. With 

the increasing sample concentrations, epicatechin 

exhibited the largest DPPH free radical scavenging 

capacity.  

 

When the concentration of each sample reached 0.2–

0.25 mg/mL, the DPPH free radical scavenging ca-

pacity was equal to approximately 93% for the five 

compounds. Moreover, the dimeric and trimeric pro-

cyanidins showed nearly no difference in the scav-

enging ability of DPPH free radicals with the increas-

ing concentration. In addition, at the same concentra-

tion, the DPPH free radical scavenging activity of 

flavan-3-ol monomers and oligomeric procyanidins 

were stronger than that of ascorbic acid, thereby ex-

hibiting the powerful antioxidant capacity of procya-

nidins. Similarly, the ABTS free radical scavenging 

experiment also manifested that ascorbic acid had a 

weaker antioxidant capacity than flavan-3-ol mono-

mers and oligomeric  procyanidins at the same con-

centration. Moreover, flavan-3-ol monomers had a 

stronger antioxidant capacity than dimeric and tri-

meric procyanidins. The ABTS free radical scaveng-
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ing capacity of procyanidins B1 was higher than that 

of procyanidins B2, but the difference was insignifi-

cant. Procyanidin C1 could also scavenge. 

Figure 6. A: DPPH radical scavenging capacity; B: 

ABTS radical scavenging capacity; C: Ferric reduc-

ing antioxidant power (FRAP) 

 

ABTS free radicals, slightly lower than dimeric pro-

cyanidins. Therefore, the DPPH and ABTS free radi-

cal scavenging abilities were ranked as follows: fla-

van-3-ol monomers > trimeric procyanidins > trimer-

ic procyanidins > ascorbic acid. The five compounds 

were dose-dependent on the scavenging ability of the 

DPPH and ABTS free radicals. The experimental 

results illustrated that the antioxidant capacity of pro-

cyanidins was related to the DP. However, in the 

FRAP assay, the FRAP values of the five compounds 

indicated that procyanidins C1 had the highest ferric 

reducing antioxidant power. The ferric reducing anti-

oxidant power of trimeric procyanidins was weaker 

than that of procyanidins C1, and flavan-3-ol mono-

mers had the weakest ferric reducing antioxidant 

power. In addition, the FRAP values of ascorbic acid 

were greater than those of flavan-3-ol monomers and 

trimeric procyanidins but less than that of trimeric 

procyanidins at 0.025–0.1 mg/mL. When the concen-

tration was between 0.1 and 0.25 mg/mL, the FRAP 

value of ascorbic acid was not significantly different 

from those of flavan-3-ol monomers and trimeric 

procyanidins, but it was still lower than that of tri-

meric procyanidins. The FRAP values of the five 

samples were opposite to those in the DPPH and 

ABTS free radical scavenging experiment. Flavo-

noids are known to mainly react with free radicals 

through phenolic hydroxyl groups to achieve antioxi-

dant effects. That is, antioxidant effects are gradually 

enhanced with the increase of the number of phenolic 

hydroxyl groups, which explains the FRAP values for 

the different DP of procyanidins. However, the anti-

oxidant activity depends not only on the number of 

phenolic hydroxyl groups, but also on the different 

structural properties and steric configuration (Chen et 

al., 2016). Therefore, it may be the reason that DPPH 

and ABTS free radical scavenging ability are differ-

ent from the FRAP values for the different DP of pro-

cyanidins.   

 

To sum up, the scavenging ability of the DPPH and 

ABTS free radicals decreased with the increasing of 

DP. However, the FRAP values increased with the 

DP. The results of all the above assays indicated that 

all flavan-3-ol monomers and oligomeric procya-

nidins have strong antioxidant capacities. The com-

parison with previous studies indicated that the anti-

oxidant activity of procyanidins from Aronia berries 

was better than those of several procyanidins extracts 

(Neilson et al., 2016).  

 

CONCLUSIONS 

In summary, we have investigated the specific procy-

anidins structure information of Aronia melanocarpa 

berries and researched the relationship between each 

flavan-3-ol monomers and oligomeric procyanidin of 

different DP (DP 1, DP 2, DP 3, etc.) and their anti-

oxidant properties. Overall, we hypothesized that 

Amps could be applied to a promising functional 

food component. 
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