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RESEARCH HIGHLIGHTS 

1. Both RB and RF classification methods performed well in vegetation structure mapping, 

respectively, 84.1% and 86.4%. 

2. RF was preferred over RB, since the former was better able to handle the complexity of the 

rules needed to distinguish many classes. 

3. Exploitation of digital aerial photographs in semi-automatic classification processes remains 

challenging, due to inaccurate calibration of the reflectance values and the limited number 

of spectral bands in aerial photographs. 

4. High resolution satellite imagery is a good alternative if aerial photographs are not availa-

ble. 

Copy rights: © This is an Open access article distributed under 
the terms of International License.                                                

Exploiting low-cost and commonly shared aerial photographs and LiDAR data 
for detailed vegetation structure mapping of the Wadden Sea island of Ameland 

SDRP Journal of Earth Sciences & Environmental Studies  (ISSN: 2472-6397) 

 DOI: 10.25177/JESES.4.1.2 Research 

http://crossmark.crossref.org/dialog/?doi=10.25177/10.25177/JESES.4.1.2


Mücher, C.A et al. 

——————————————————————————————————————————————————–

WWW.SIFTDESK.ORG 503 Vol-4 Issue-1 

SIFT DESK  

ABSTRACT 

Regular mapping of vegetation structure is important 

for biodiversity monitoring, and increasingly for 

tracking compliance with nature policy mandates. As 

such, the Netherlands uses vegetation structure map-

ping to monitor the Natura 2000 site on the Dutch 

Wadden Sea island of Ameland. Three decades of 

natural gas extraction here has caused soil subsid-

ence, impacting vegetation and habitats on the island. 

In the Netherlands, vegetation structure mapping is 

typically done using conventional techniques, primar-

ily field surveys combined with visual interpretation 

of aerial photographs. This procedure is time-

consuming and often too inconsistent and inefficient 

for large areas. In the current study we exploited 

commonly shared and low-cost aerial photographs 

and LiDAR data for detailed vegetation structure 

mapping. Aerial photographs are not always easy to 

use in automatic classification procedures, as they 

often lack calibrated spectral reflectance values. Fur-

thermore, pre-processing of aerial photographs to ren-

der them more attractive may skew the image so that 

it no longer accurately depicts the original scene any-

more. Our aim was to determine if automatic or semi-

automatic classification techniques could be applied 

to these readily available Dutch data to support map-

ping and monitoring of the vegetation structure of 

larger areas. We compared the effectiveness of two 

well-known classification methods, namely rule-

based (RB) and random forest (RF). The RF algo-

rithm was applied with its default settings, as sup-

plied by eCognition software. Both classification 

methods performed well, with overall accuracies of 

84.1% (RB) and 86.4% (RF). Each method, however, 

has its advantages and disadvantages, which are dis-

cussed. Overall, RF classification was preferred over 

RB classification, as it was better able to handle the 

complexity of the rules needed for distinguishing 

more classes. Provision of in situ training data, such 

as vegetation relevés, was not really problem in the 

Dutch context. Nevertheless, exploitation of new dig-

ital aerial photographs produced each year in a semi-

automatic process remains a challenge. Commercial 

high resolution satellite imagery (~0.5 m resolution) 

is therefore still preferred by us. This latter, unfortu-

nately, is more costly than aerial photographs which, 

while not always ideal, are readily available at no 

additional costs for involved organisations. 

 

Keywords: LiDAR; aerial photographs; open data; 

rule-based; random forest; vegetation mapping; Ame-

land  

 

1. INTRODUCTION 

Regular mapping of vegetation structure is important 

for biodiversity monitoring, especially in areas with 

dynamic landscapes. For instance, the Habitats Di-

rective (Art. 6, 12, 16 and 17) requires European Un-

ion (EU) member states to report on the status of pro-

tected habitats and species. For each Natura 2000 site 

within their boundaries, member states must assess 

once every six years the conservation status of the 

habitat types concerned, in particular, their area, 

structure and function (ETC, 2016). In addition, site-

level information on vegetation structure is required 

for management plans and local impact assessments. 

 

In the Netherlands, vegetation structure monitoring is 

required for the island of Ameland, situated in the 

Wadden Sea just north of the Dutch mainland. Here, 

three decades of natural gas extraction has resulted in 

soil subsidence, which has impacted vegetation struc-

ture and habitats. In addition to vegetation plot re-

cordings to track changes in species composition 

(Van Dobben and Slim, 2012; Brus et al., 2014, 

2016), wider spatial changes in vegetation structure 

must be monitored. Mapping of vegetation structure 

is also important for species identification and distri-

bution modelling, since fauna and flora often have 

strong preferences for specific vegetation niches 

(Bunce et al., 2013).  

 

Vegetation species and structure mapping in the 

Netherlands is typically done by field surveys com-

bined with visual interpretation of aerial photographs. 

Yet, this procedure is time-consuming and often too 

inconsistent and inefficient to be feasible for large 

areas. Airborne and spaceborne imagery for the Neth-

erlands are increasingly available at affordable cost or 

as open data. It would therefore seem fruitful to ex-

plore alternative and semi-automatic classification 

techniques using these readily available imagery 

sources.  
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Semi-automatic classification systems such as EO-

DHaM (Earth Observation Data for Habitat Monitor-

ing) have proven suitable for mapping land cover and 

habitats using commercial very high resolution satel-

lite imagery such as Worldview-2 (Lucas et al., 2015; 

Mücher et al., 2015). However, such imagery remains 

relatively expensive, while for the Netherlands at 

least, very detailed aerial photographs are often readi-

ly available at little or no cost. In the Netherlands, in 

particular, aerial photographs with spatial resolutions 

of 25 cm and often including NIR (near-infrared) are 

produced every year covering the entire country (and 

since 2012 twice a year with a winter and summer 

acquisition). Due to their higher spatial resolution, 

aerial photographs are normally preferred over very 

high resolution commercial imagery. Aerial photo-

graphs generally offer sufficient resolution to detect 

individual trees and shrubs, which makes them suita-

ble for the needs of conservation site managers and 

many other users. Examples of commonly shared and 

recent aerial photographs available for non-

commercial applications for the Netherlands can be 

found at http://pdokviewer.pdok.nl/.  

 

Also freely available for the Netherlands, next to aeri-

al photographs, are high spatial resolution LiDAR 

(Light Detection and Ranging) point cloud data (~15 

point measurements per m2) and the derived digital 

elevation models on a 50 cm grid measured in centi-

metres’ height (source: www.ahn.nl). Digital eleva-

tion model data for the Netherlands (AHN, Actueel 

Hoogtebestand Nederland) has been available as open 

data since 2003. It is produced about once every six 

years (AHN1 is from 2003, AHN2 is from 2007–

2012 and AHN3 is from 2014–2019 and expected to 

be available around 2020).  

 

This paper explores the extent that these two readily 

available high-resolution data sources (aerial photo-

graphs and LiDAR) can be exploited to support more 

efficient vegetation structure mapping and monitor-

ing. If so, field surveys can be more efficiently fo-

cused on other aspects that cannot be derived from 

airborne imagery. Previous studies have shown that 

LiDAR data used alone or in combination with high-

resolution multi-spectral or hyperspectral satellite 

imagery can perform quite well in vegetation studies 

(Hill and Thomson, 2005; Lucas et al., 2015; Mason 

et al., 2003; Mücher et al., 2015; Vierling et al., 

2008). Furthermore, vegetation structure and canopy 

metrics ranging from grassland to forest have been 

shown to be strong predictors of species richness 

(Bunce et al., 2013; Hill and Thomson, 2005; Hyde et 

al., 2005; Mason et al., 2003; Vierling et al., 2008) 

and bird distribution patterns (Bradbury et al., 2005; 

Ficetola et al., 2014; Hinsley et al., 2006). Within 

habitats, too, LiDAR data have been successfully em-

ployed to quantify variation and dynamics in vegeta-

tion structure (Bradbury et al., 2005; Hantson et al., 

2012; Korpela et al., 2009; Weishampel et al., 2007). 

Some studies suggest that the results obtained in habi-

tat analyses using LiDAR may be enhanced by com-

bining LiDAR data with spectral data (Bergen et al., 

2009; Clawges et al., 2008; Hyde et al., 2006). Li-

DAR data appears to have performed well in charac-

terizing tree species using canopy height as the main 

explanatory variable (Geerling et al., 2007; Hantson 

et al., 2012; Korpela et al., 2009). By integrating 

spectral data and canopy height data generated from 

LiDAR, Hill and Thomson (2005) produced an eco-

logically relevant thematic classification for a com-

plex woodland environment, and Hantson et al. 

(2012) were able to identify invasive woody species.  

In view of these results, LiDAR datasets would seem 

to offer a promising alternative for mapping habitats 

in fine detail across large areas. It may eventually be 

able replace labour-intensive, field-based measure-

ments, and offer means of characterizing habitats in 

novel ways (Vierling et al., 2008). In this sense, Li-

DAR could be an efficient tool for short-term and 

long-term monitoring of changes in vegetation struc-

ture. 

 

The best way to exploit aerial photography is with 

object-oriented classification, which is not dependent 

on the value of individual pixels and is able to take 

texture into account. In this sense, it is similar to the 

process of visual image interpretation, in which dif-

ferent vegetation mapping units are identified based 

on tone, texture, pattern and contrast. Object-based 

image analysis (OBIA) separates the identification 

and delineation of objects from the classification of 

http://pdokviewer.pdok.nl/
http://www.ahn.nl
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objects, in line with the traditional, manual approach 

of delineating boundaries and assigning labels in the 

field (Fu and Mui, 1981;  Liu and Xia, 2010). 

 

This investigation employed an OBIA-based ap-

proach, with a general segmentation followed by 

classification. Two main image classification meth-

ods were compared: rule-based (RB) and random 

forest (RF). These were applied to homogenous vege-

tation units identified from recurring datasets derived 

from low cost or public domain aerial photographs 

and LiDAR remote sensing data.  

  

2. STUDY AREA AND MATERIALS 

2.1 Study area 

The study area for this research encompassed the 

eastern part of the barrier island of Ameland. The 

total area was approximately 1,600 ha, which is too 

large to be covered easily by traditional vegetation 

structure mapping. The island of Ameland (57 km2, 

53°27'43"N, 5°54'12"E, Fig. 1) is located in the Wad-

den Sea, north of the Dutch mainland. The Wadden 

Sea and its islands are of great ecological signifi-

cance, as underlined by their designation as a Natura 

2000 site and a United Nations Educational, Scien-

tific and Cultural Organization (UNESCO) world 

heritage site. Ameland has a large variety of habitats, 

ranging from dry dunes and dune slacks to tidal salt 

marshes, heathlands and fresh water (Roelofsen et al., 

2014). Soil subsidence here due to natural gas extrac-

tion affects an area some 14 km in diameter. The 

maximum subsidence in 2017 was around 34 cm 

(Piening et al., 2017). Since 1986 vegetation monitor-

ing has been executed here, mainly by recording veg-

etation characteristics on permanent plots along a 

gradient within the subsidence basin. Research has 

particularly sought to discover whether subsidence 

has had consequences for habitat quality (Van Dob-

ben and Slim, 2012). In ecological terms, subsidence 

has the same effect as sea level rise. Therefore the 

monitoring of soil subsidence also serves as a model 

for investigating the impact of accelerated sea level 

rise due to climate change. 

 

2.2 Materials 

This study used aerial photographs and LiDAR data 

from 2008 (AHN2 LiDAR data), as well as existing 

field data. The aerial photographs were made by EU-

ROSENSE on 11 October 2008. Since the most re-

cent LiDAR data (AHN2) for Ameland were from 15 

February 2008, aerial photographs were selected 

from the same reference year. The available aerial 

photographs have four spectral bands: red (R), green 

(G), blue (B) and infrared (I), with a 25 cm spatial 

resolution. The addition of the infrared channel 

makes the aerial photographs more suitable for dis-

criminating vegetation, since this channel is very sen-

sitive to differences in the amount of photosyntheti-

cally active biomass. The aerial photographs were 

available as orthorectified mosaics, but no radio-

metric calibration was done. Fig. 1 shows the loca-

tion of the study area and an ortho-mosaic of the aeri-

al photographs used.  

Fig. 1. Above: Location of the study area at the east-

ern end of the Wadden Sea island of Ameland, north 

of the Dutch mainland. Below: Ortho-mosaic of aeri-

al photographs showing the study area. 

 

We processed Object Heights for the Netherlands 

(OHN), a product derived from AHN2 based on the 

LiDAR data. The processed OHN has 50 cm by 50 

cm grid cells, with object height given in centimetres, 

and can be applied for operational use at any location 

in the Netherlands (Kramer et al., 2014). Fig. 2 (top) 

shows the original LiDAR cloud points with the aeri-

al photograph false-infrared colours draped over the 

LiDAR points. Fig. 2 (below) shows in brown all 
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LiDAR points classified as ground, and in green all 

points classified as above-ground. The object height 

is defined as the height of an object above ground 

level and indicated by the real height within the spe-

cific grid cell. The OHN was in fact obtained by sub-

tracting the Digital Terrain Model (DTM) from the 

Digital Surface Model (DSM), both available as open 

data (www.ahn.nl). The original DTM from AHN2 

contains many no-data areas caused by gaps in the 

original data acquisition. For the OHN, these data 

gaps in the DTM were filled using ancillary data 

sources and extrapolation methods (Kramer et al., 

2014). 

  

Fig. 2. Above: Detailed 3D perspective of a bicycle 

and unpaved road in the dunes of eastern Ameland 

with LiDAR cloud points (~15 point measurements/

m2) as available for the entire Netherlands about once 

every six years since 2003; the 3D LiDAR cloud 

points (obtained 15 February 2008) are draped by 

RGB false colours (11 October 2008) at 25 cm reso-

lution. The segment along the black dotted line is pre-

sented as a transect in the figure below. Below: 

Ground is represented by brown dots, while all ob-

jects are represented by green dots. These concerns in 

fact common shared data for the whole of the Nether-

lands.  

 

Field work was done from 10 to 24 June 2014. 

Twelve vegetation structure classes were distin-

guished, including non-vegetated classes, and sam-

pled by measuring their geographic locations. The 

classes were as follows: high thicket (>5 m height), 

medium thicket (2–5 m height), low thicket (0.5–2 m 

height), salt marsh vegetation, salt marsh sparsely 

vegetated, dune vegetation, dune sparsely vegetated, 

reed, sand, water, salt inland water and sea water (see 

Tables 1 and 2). A handheld GPS (Garmin eTrex 30) 

was used and at least one photograph was taken at 

each location. For each location, the dominant species 

were recorded alongside the heights measured in cen-

timetres.  

It merits noting that the time difference of six years 

between the acquisition date of the imagery (2008) 

and the field work (2014) could have produced small 

errors in the validation process. But the interpreters 

did not encounter these to any significant extent. 

 

3. METHOD  

3.1 Object segmentation 

We implemented the OBIA method, involving object 

segmentation followed by classification, both per-

formed in eCognition. As observed earlier, instead of 

analysing individual pixels, the OBIA method groups 

pixels into meaningful objects and then those objects 

are analysed for classification, in our case, into vege-

tation structure classes. OBIA gives the user control 

over the mapping scale and can handle the implicit 

variability that comes with very high resolution im-

agery (Liu and Xia, 2010). 

  

Image segmentation has its roots in the machine vi-

sion advances of the 1980s (Blaschke et al., 2004; Fu 

and Mui, 1981). The segmentation method used here 

is based on the fractal net evolution approach (FNEA) 

(Baatz and Schäpe, 2000). FNEA is applied using 

commercially available software, such as eCognition 

(Meinel and Neuber, 2004), and is widely employed 

in scientific studies (Benz et al., 2004; Geerling et al., 

2009; Hantson et al., 2012; Myint et al., 2011; Zhang 

and Huang, 2010). Objects contain more information, 

such as texture, than the disparate digital image pixels 

alone. Hundreds of additional object features may be 

used, including texture metrics but also geometric 

characteristics of objects and spatial relations between 

objects, to provide additional means to differentiate 

classes.  

 

We used two semi-automatic methods with a proven 

track record in scientific studies to classify the vege-

tation structure of eastern Ameland. The first is the 

http://www.ahn.nl


Mücher, C.A et al. 

——————————————————————————————————————————————————–

WWW.SIFTDESK.ORG 507 Vol-4 Issue-1 

SIFT DESK  

rule-based (RB) classification method, in which a set 

of classification rules is formulated based on expert 

judgement. The second classification method, ran-

dom forest (RF), explores segmented objects for spe-

cific object features on the basis of a training set. Op-

timizing the RF parameters was not part of this study. 

We used the default settings of the RF classifier sup-

plied by eCognition software. The exact same seg-

mentation was used for both the RB and the RF clas-

sifications (so the identified objects were exactly the 

same). 

 

To train the classification (997 locations) and for val-

idation (301 locations), in situ measurements were 

recorded; see Fig. 3 for their locations. Of course the 

training and validation points were different ones. 

The study area was stratified into major physio-

geographic expanses (dunes, salt marsh, polder and 

sea) on the basis of elevation data (AHN) and topo-

graphic information (see Fig. 3). The stratification 

was used as contextual information in the post-

processing of both classifications, in order to distin-

guish some of the vegetation structure classes and 

water types (see also Annex I). The strata were main-

ly defined as follows: (i) salt marsh concerns areas 

more than 2.1 m below NAP (Amsterdam Ordnance 

Datum) and connected to the Wadden Sea; (ii) dunes 

concern areas higher than 2.1 m NAP; (iii) polder 

concerns areas lower than 2.1 NAP, but not connect-

ed to the Wadden Sea; (iv) sea water is non-terrestrial 

area. 

Fig. 3. Stratification with training samples per vege-

tation structure class (coloured dots) and validation 

points (black triangles). 

 

3.2 Rule-based (RB) classification 

The segmentation and RB classification were per-

formed with Trimble eCognition Developer 9.1 

(Trimble, 2015). The segmentation itself involved 

two basic steps: a multi-resolution segmentation and 

if needed a spectral merge. The eCognition parameter 

settings are given in section 4. Rule sets were defined 

for classification of the identified and segmented ob-

jects. The classification domain was a set of image 

objects, and every process looped through the set of 

image objects, applying the rule sets to each. If all 

rules for a class were evaluated as effective to char-

acterize an object, the object was labelled as that 

class. Complex conditions were defined to narrow 

down the classes of interest. The rule sets were fine-

tuned by investigating individual object features and 

their values, to determine if these could help identify 

the vegetation structure class of the object. Finding 

the appropriate rule sets, including setting thresholds 

for specific object features, was often time consum-

ing. A big advantage of RB classification compared 

to RF is that little training data is needed. The rules 

give a mechanistic understanding of the relevant fac-

tors influencing the classification procedure. 

 

3.3 Random forest (RF) classification 

Random forest (RF) is a modern machine-learning 

classifier using an ensemble of decision trees 

(Breiman, 2001) and efficient for cloud computing as 

well. Decision tree ensembles are one of several pop-

ular alternatives to the traditional maximum likeli-

hood classification. RF makes no assumptions on the 

distributional characteristics of the independent vari-

ables or on the response variables (Cutler et al., 

2007). This makes RF suitable for an object-based 

classification with sufficient training data and rele-

vant object features. RF builds trees by taking a ran-

dom subset of measured variables from the imagery 

and a random subset of training data. The number of 

decision trees, the number of variables and the num-

ber of training objects for each tree are all parameters 

in the RF algorithm (Breiman, 2001; Gislason et al., 

2006; Liaw and Wiener, 2002). In eCognition, the 

default maximum tree number is 50. The learning 

termination criteria determine how training should be 

stopped, namely, by a maximum number of trees, by 

forest accuracy (0.01% is the default) or by both 

(both is the default) (see Trimble, 2015). In the run-
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ning process, the data is recursively split into increas-

ingly homogeneous regions. At each step, the most 

optimal variable and value is selected to produce sub-

groups of the data with the lowest impurity. The 

splitting continues until a maximum number of trees 

is reached or until all of the variance is explained to 

an acceptable level (Cutler et al., 2007). During clas-

sification, all of the objects are pushed through the 

trees, and the trees cast a vote according to the class 

of the terminal node. The objects are assigned to a 

class on the basis of a majority vote. For a more de-

tailed review of RF, see Hastie et al. (2001).  

 

4. RESULTS AND DISCUSSION 

The same segmented vegetation objects were used as 

input for both classification methods. These were 

derived from segmentation techniques applied to the 

aerial photographs. To identify the spatial vegetation 

units (objects), the following parameter settings were 

used in eCognition Developer 9.1 (Trimble, 2015): 

scale 50, shape 0.1 and compactness 0.9. The scale 

parameter was selected by testing the values 10, 25, 

50 and 75. The spatial objects created with the value 

50 had the best visual match to the vegetation struc-

ture classes on the aerial photographs, while also best 

matching the requirements of the vegetation experts. 

Using the aerial photograph RGB colour bands only 

(without the LiDAR data) gave the best results for 

the segmentation. All parameters in eCognition were 

in fact set by trial and error, and in consultation with 

a vegetation specialist.  

 

The RB classification was based on a limited set of 

object features, namely, (i) maximum value of OHN, 

(ii) Normalized Difference Vegetation Index (NDVI), 

(iii) brightness, (iv) grey-level co-occurrence matrix 

(GLCM) homogeneity of OHN in all directions and 

(v) red ratio. Annex I presents the thresholds for all 

specified object features in the RB classification. Af-

ter a first run, some objects still remained unclassi-

fied. These were classified in a second round using 

additional thresholds (see Annex I). In a final step, 

the preliminary vegetation structure classes were re-

coded to the final classes per strata. This rule-based 

process used four main strata: (1) dunes, (2) salt 

marsh, (3) polder and (4) sea water. The final RB 

classification resulted in a vegetation structure map 

with 12 classes (minus polder and gas extraction lo-

cation; Fig. 4). 

Fig. 4. Vegetation structure map resulting from rule-

based (RB) classification using aerial photographs 

and LiDAR data from 2008. 

 

As mentioned, the RF classification (Breiman, 2001) 

used the same segmentation as the RB classification. 

Both classification methods also targeted the same 12 

vegetation structure classes, in order to enable a good 

comparison (see Fig. 5). Although an unlimited num-

ber of object features could be used for the RF classi-

fication, a careful selection of nine object features 

gave a better result for the classes of interest. The RF 

classifier was run in eCognition on the basis of these 

nine object features: (i) NDVI, (ii) spectral bright-

ness, (iii) max pixel object height OHN, (iv) mean 

blue, (v) mean green, (vi) mean red, (vii) mean infra-

red, (viii) ratio red and (ix) GLCM homogeneity 

OHN in all directions and 997 training points.  

 

For a comparison of some alternative classification 

methods, including RF and the popular support vec-

tor machines, see Meyer et al. (2003). For a compari-

son between decision tree ensemble methods such as 

RF and a method with the individual decision tree 

CART, see Gislason et al. (2006). For a comparison 

of RF and other decision tree ensemble methods us-

ing bagging and boosting, tested on land cover da-

tasets, see Chan and Paelinckx (2008). All authors 

agree that RF generally ranks high in classification 

accuracy and that RF is relatively insensitive to its 

parameters and computationally fast. However, there 

is some debate about the tendency of decision trees to 

overfit (Segal, 2003), and RF is said to sometimes 

perform poorly with high class imbalance (Blagus 

and Lusa, 2010). Breiman (2001) disputes these 
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weaknesses, stating that RF is insusceptible to these 

issues, which are commonly associated with decision 

trees, because of the double randomness of the sub-

sets in tree construction and the law of large num-

bers. 

Fig. 5. Vegetation structure map resulting from ran-

dom forest (RF) classification implemented based on 

nine feature classes as derived from aerial photo-

graphs and LiDAR data from 2008.  

 

Fig. 6 presents a comparison of the classification re-

sults (RB and RF) for a small area. Overall, the vege-

tation patterns observed are very similar, although 

many minor differences in structure can be detected. 

Since the two classification methods provide visually 

quite similar results, a quantitative validation was 

performed. 

Fig. 6. Details for a small area for the two classifica-

tions. Above: Rule-based (RB) classification. Below: 

Random forest (RF) classification. 

 

A total of 301 validation points were available (see 

Fig. 3 for their locations). Using these, an error or 

contingency matrix was produced for the outputs of 

both classification methods (tables 1 and 2). 

 

A total of 301 validation points were available (see 

Fig. 3 for their locations). Using these, an error or 

contingency matrix was produced for the outputs of 

both classification methods (tables 1 and 2). 

Table 1. Validation matrix for the rule-based (RB) classification (counts) (veg. = vegetated). 

RB classification  Field reference         

 1 2 3 4 5 6 7 8 9 10 11 12 Total 
Reliability 

(%) 

01_High thicket (wood) 15 1           16 93.8 

02_Medium thicket  54    1  1  1   57 94.7 

03_Low thicket   24 1  4  1     30 80.0 

04_Salt marsh vegetation   1 70 5   1   2  79 88.6 

05_Salt marsh sparsely 
veg.     4   2 1  2  9 44.4 

06_Dune vegetation   1   24 3 2     30 80.0 

07_Dune sparsely vege-
tated      1 7 2     10 70.0 

08_Reed  1    1  15     17 88.2 

09_Sand     1  5  13    19 68.4 

10_Water      2  1  10   13 76.9 

11_Salt water    1       16  17 94.1 

12_Sea water         1   1 2 50.0 

Unclassified               1   1     2 100.0 

Total 15 56 26 72 10 33 15 26 15 12 20 1 301  

               

Accuracy (%) 100.0 96.4 92.3 97.2 40.0 72.7 46.7 57.7 86.7 83.3 80.0 100.0   

               

Overall accuracy (%) 84.1              
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Table 2. Validation matrix for the random forest (RF) classification (counts) (veg. = vegetated). 

RF classification Field reference          

 1 2 3 4 5 6 7 8 9 10 11 12 Total   
Reliability
(%) 

01_High thicket 
(wood) 13            13  100.0 

02_Medium thicket  54    1    1   56  96.4 

03_Low thicket   26 1  3     1  31  83.9 
04_Salt marsh vegeta-
tion    71 2   1     74  95.9 
05_Salt marsh sparsely 
veg.  1   7   2 1  1  12  58.3 

06_Dune vegetation      26 3 1     30  86.7 
07_Dune sparsely 
vegetated      2 7 3     12  58.3 

08_Reed        18     18  100.0 

09_Sand     1  5  9    15  60.0 

10_Water      1  1  11   13  84.6 

11_Salt water         4  17  21  81.0 

12_Sea water         1   1 2  50.0 

Unclassified 2 1                 1   4   100.0 

Total 15 56 26 72 10 33 15 26 15 12 20 1 301   

                

Accuracy (%) 86.7 96.4 100.0 98.6 70.0 78.8 46.7 69.2 60.0 91.7 85.0 100.0    

                

Overall accuracy (%) 86.4               

The impression of Fig. 6 is confirmed by Table 1 and 

Table 2, namely, that the classification accuracies of 

the RB and RF classification algorithms are quite sim-

ilar, 84.1% versus 86.4% overall. Though these classi-

fication accuracies are high, it must be noted that the 

number of vegetation structure classes (12) was rather 

more limited than in most traditional vegetation stud-

ies. Nonetheless, small differences in the classifica-

tion accuracies could favour a choice for one method 

or the other, along the lines discussed below.  

 

With the RF classifier it is easier to distinguish more 

vegetation structure classes if sufficient training data 

is available. RF is better able to handle the complexity 

of the rules needed to distinguish many classes. In 

other words, RF is more suitable than RB classifica-

tion for handling numerous different attributes for the 

class definitions. Nonetheless, RF needs training data, 

the collection of which requires substantial effort, and 

the classification itself is much more a black box than 

RB classification, with its transparent decision rules 

(see Annex I). The straightforwardness of RB classifi-

cation means that it can be more easily extended to 

other areas. But for other areas the thresholds still 

need to be fine-tuned, which means additional work in 

most cases. Site managers and vegetation experts can-

not help in providing rule sets or in fine-tuning the 

thresholds, but in most cases they are able to provide 

ground truth data. That last is of great advantage for 

the RF classification method. If provision of in situ 

data is not a problem, the RF method is preferred over 

RB classification. The current trend toward increased 

availability of harmonized and consistent in situ data 

in the public domain or as open data (e.g., see 

www.GBIF.org) would favour the RF classification 

method.  

 

A major disadvantage of both classification methods 

is that the aerial photographs are not radiometrically 

calibrated. Calibrated, very high resolution multi-

spectral or hyper-spectral satellite imagery improves 

semi-automatic classifications, but the spatial resolu-

http://www.GBIF.org


Mücher, C.A et al. 

——————————————————————————————————————————————————–

WWW.SIFTDESK.ORG 511 Vol-4 Issue-1 

SIFT DESK  

tion of this imagery is still limited compared to aerial 

photographs and it is quite expensive. This is why 

exploitation of readily available, low-cost or public 

domain data, such as aerial photographs and LiDAR 

data, remains such an interesting proposition. But this 

does limit the number of classes that can be distin-

guished.  

 

A major improvement that could be made for both 

classification methods based on very high spatial res-

olution imagery would be improvement of the posi-

tional accuracy of the field measurements. In most 

cases, field measurements are still made with simple 

handheld GPS devices with an accuracy of about 3 

m. Use of very high spatial resolution imagery (25–

50 cm) requires that the field measurements be done 

at a 10–25 cm positional accuracy, with RTK (real-

time kinematic) GPS techniques. Positional errors in 

the training data produce confusion in the RF classifi-

cation, which reduces classification accuracies. In-

vestment in high-accuracy handheld GPS systems for 

field surveyors is therefore a prerequisite for reliable 

semi-automatic vegetation mapping.  

 

An important next step for the evaluated methods is 

extrapolation of the models to other areas for which 

training and testing data were not included in the 

modelling phase. Earlier studies (e.g., Wenger and 

Olden, 2012) showed that model transferability gives 

better results for simpler models than for more com-

plex approaches, like RF. In the case of RF models, 

the fitting should focus on modelling the general rela-

tions within the case study area while not including 

local characteristics that cannot be transferred to oth-

er sites away from the training area (Juel et al., 

2015). Although this approach reduces the overall 

accuracy for the training area, it increases the poten-

tial transferability of the developed model to other 

kinds of areas. In addition, local vegetation observa-

tions are increasingly available in open-source data-

bases (e.g., www.GBIF.org). These could be adopted 

to localize the general transferable RF model. This 

site-specific approach would also allow inclusion of 

artefacts in the aerial imagery related to variations in 

illumination, time of day, weather and observation 

angle. 

CONCLUSIONS 

This study compared the performance of two well-

known classification methods on segmented homoge-

neous vegetation units exploiting very detailed, readi-

ly available data for the Netherlands. Specifically, 

aerial photographs and LiDAR data were employed 

to explore semi-automatic mapping of vegetation 

structure. This kind of mapping is very relevant, par-

ticularly in the framework of Natura 2000, as all EU 

member states have an obligation to assess once eve-

ry six years the conservation status of the habitat 

types within their Natura 2000 sites (ETC, 2016). 

Vegetation structure is an important indicator of hab-

itat quality.  

 

We implemented two classification algorithms for 

large part of Wadden Sea island of Ameland, namely 

rule-based (RB) and random forest (RF) classifica-

tion. Both methods produced comparable results for 

the 12 vegetation structure classes of interest. Overall 

accuracies were 84.1% (RB) and 86.4% (RF). Both 

methods have their advantages and disadvantages. 

RF can incorporate more object features in complex 

rules than a normal RB classification, so it can pro-

duce better results. In principle an RB classification 

can use as many object features as an RF classifica-

tion, but this is not practicable. All sets of rules in RB 

classification are made by the expert in control, 

which is time-consuming (especially the fine-tuning 

of thresholds for specific classes). This limits the 

number of rules and feature classes that can be han-

dled.  
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Annex I. Overview of features and thresholds used in rule-based (RB) classification. 

Class number and name Feature           

 OHN Index Spectral 
GLCM ho-
mogeneity Ratio Stratum 

  

  

Max 
OHN in 

m NDVI 
bright-

ness OHN red   
  

First classification round         

01 High thicket (wood) > 5 > 0.16  < 0.45     

02 Medium thicket 2 – 5 > 0.16  < 0.45 < 0.31    

03 Low thicket 0.5 – 2 > 0.16  < 0.65 < 0.31    

04a Salt marsh vegetation  > 0.25 55 – 110 > 0.95  Salt marsh   

04b Salt marsh vegetation  0.14 – 0.25 65 – 110 > 0.95  Salt marsh   

06a Dune vegetation  > 0.25 55 – 110 > 0.95  Dunes   

06b Dune vegetation  0.14 – 0.25 65 – 110 > 0.95  Dunes   

08 Reed < 3.5 0.05 – 0.31 < 110 < 0.95 > 0.31    

09 Sand  –0.25 – 0.1 > 100      

10a Water  < 0 < 110 > 0.95  Dunes   

10b Water  < 0.3 < 50 > 0.95  Dunes   

10c Water  < 0.45 < 60 > 0.98  Dunes   

10d Water  < –0.1 < 110   Dunes   

11a Salt water  < 0 < 110 > 0.95  Salt marsh   

11b Salt water  < 0.3 < 50 > 0.95  Salt marsh   

11a Salt water  < 0.45 < 60 > 0.98  Salt marsh   

11a Salt water  < –0.1 < 110   Salt marsh   

         

Second classification round 
(applied at unclassified first 
round)       

  

01 High thicket (wood) > 5 > 0.16  > 0.45     

02 Medium thicket 2 – 5        

03 Low thicket 0.5 – 2 > 0.16  > 0.45     

08 Reed < 3.5 < 0.31 < 110 < 0.45     

05 Salt marsh sparsely vegetated < 0.5 > 0.16    Salt marsh   

07 Dune sparsely vegetated < 0.5 > 0.16    Dunes   

09 Sand  < 0.16       

         

Classes based only on stratum         

12 Sea water      Sea   

13 Polder      Polder   

14 Gas extraction location           Gas extraction location   


