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ABSTRACT 
In this study we assessed the extent to which diet quality and eating habits affected the 

composition of distal gut microbiota. Twenty six adult subjects from low-income com-

munities with a recently established food hub were recruited, and their fecal microbiota 

was analyzed via interrogation of 16S rRNA gene. Among the dietary and biometric pa-

rameters recorded for each subject, age was a statistically significant contributor to mi-

crobiota composition variability. While healthy eating and body mass indices had no di-

rect correlation between themselves, they displayed opposite effects in structuring micro-

biota composition. Thus, adopting healthier eating habits might potentially counteract the 

obesity-related shifts in gut microbial communities.  
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1. INTRODUCTION  

Chronic disease disparities are persistent across the 

United States with rates of diabetes [1], obesity [2], 

cardiovascular disease [3], and some cancers [4] 

trending higher for people of low socioeconomic sta-

tus and racial/ethnic minorities [5]. Diet is central to 

both preventing and treating these disparities through 

the provision of nutrients that influence numerous 

physiological mechanisms including those mediated 

by gut microbiota.   

 

One strategy to reduce diet-related chronic disease 

disparities is to improve dietary behaviours through 

individual, community, and systems interventions [6]. 

This approach is focused on improving diet quality 

(i.e., the balance of healthy and unhealthy consumed 

foods), which can be measured using a standardized 

Healthy Eating Index (HEI) based on national dietary 

guidelines [7]. There is evidence that diet quality is 

worse among populations at greatest risk for diet-

related chronic disease, with gaps in diet quality in-

creasing rather than decreasing over time [8].   

 

It is now well recognized that gut microbes mediate 

many dietary effects on human health. That is be-

cause a substantial amount of ingested foods avoids 

digestion and absorption in the small intestine and 

traverse to the colon, a section of the gastrointestinal 

tract that is packed with microbes. The list of such 

compounds includes dietary fiber and resistant starch-

es, small amounts of sugars, dietary proteins and fats, 

active compounds released in the small intestine - bile 

salts and protein enzymes [9]. Majority of these unab-

sorbed compounds are processed in the colon by the 

gut microbiota. Whereas end-products of carbohy-

drate fermentation (various short chain fatty acids) 

have positive functions in the gut [10], protein fer-

mentation is more detrimental to the host health be-

cause it results in the production of harmful hydrogen 

disulfide, phenolic compounds, and ammonia [11]. 

Less is known about colonic fermentation of dietary 

fatty acids, and the available evidence points to sever-

al detrimental effects on the host [12, 13].  

 

Multiple prior studies have shown that long-term con-

sumption of different diets leads to drastically differ-

ent gut microbiota profiles, and that these microbial 

community differences can have an impact on the 

host physiology and well-being [14, 15]. Findings 

from clinical studies reveal consistent though not un-

ambiguous evidence that people with diet-related 

chronic diseases have less diverse gut microbiota than 

healthy controls [16]. Just like diet quality varies by 

socioeconomic status and race/ethnicity, emerging 

evidence suggests that composition of gut microbi-

ome also varies based on these social factors, with 

lower income children and adults and African Ameri-

cans housing less diverse distal gut microbiota com-

pared to higher income and Caucasian populations 

[17, 18].   

 

In this study, we sought to profile fecal microbiota in 

a cohort of people consuming a typical Western diet 

and living in low-income urban neighbourhoods with 

poor access to healthy food retailers such as super-

markets (i.e., food deserts). Microbial composition 

was tested for associations with the healthy eating 

index, subjects’ BMI and age, as well as dietary con-

sumption patterns.  

  

2. MATERIALS AND METHODS  

2.1. Subject cohort 

This project was part of a longitudinal study that 

started in 2015-16 to examine changes in diet quality 

over time among residents living in food desert 

neighbourhoods in Cleveland and Columbus, Ohio, 

USA [19]. Participants were recruited to join the an-

cillary fecal microbiome study in 2017 during Time 2 

data collection of the parent study. They were pur-

posefully selected based on their Time 1 (time of ini-

tial enrolment) Healthy Eating Index 2010 (HEI-

2010) scores, a measure of diet quality based on con-

formity to 2010 dietary guidelines [7]. HEI-2010 was 

calculated based on the data collected and processed 

using the Nutrition Data System for Research, a 

standardized and comprehensive 24-hour dietary re-

call method [7]. Three dietary recalls per person were 

collected at each time period reflecting two weekdays 

and one weekend within a 30-day window to limit 

within-subject seasonal variability [20]. The average 

of the three HEI-2010 scores was derived for each 

time point, with higher average scores (on 0-100 

scale) indicating greater adherence to dietary guide-

lines. HEI-2010 scores were categorized into three 
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groups reflecting high (56-100), medium (44-55), and 

low (043) levels of diet quality for each subject. This 

study has been approved by Case Western Reserve 

University IRB Committee.  

 

2.2. Collection of fecal samples and isolation of DNA 

All experiments were performed in accordance with 

relevant guidelines and regulations. During Time 2 

period, participants were invited to take part in the 

fecal microbiome study. Inclusion criteria included: 

(1) enrolled in longitudinal study, (2) provided in-

formed consent in the parent study to be contacted for 

enrolment in other studies, (3) randomly selected to 

take part based on HEI-2010 score, (4) not taking any 

antibiotics, probiotics, antacids, or acid reducing 

medications in the prior four months based on self-

report, and (5) provided informed consent to join fe-

cal microbiome study after reviewing all study proce-

dures via a face-to-face session. Participants were 

compensated for time and effort and for providing 

fecal sample. Analysis of fecal microbiomes was ap-

proved by Wright State University Institutional Re-

search Board committee.  

 

Fecal samples were collected during Time 2 dietary 

recall collection period from 28 volunteers. For all 

participants, Healthy Eating Index was re-calculated 

at Time 2 based on the dietary recall at the time of 

stool collection. Approximately 500 mg of fresh stool 

was obtained from each participant using OMR-200 

collection kit (DNA Genotek, Canada). Microbial 

genomic DNA was isolated using ZR Fecal DNA 

MiniPrep kit (Zymo Research) and purified using 

HRC-IV column to remove potential PCR inhibitors 

in fecal material [21]. Two volunteers did not provide 

fecal material of acceptable quality and their samples 

were excluded from further analysis.  

 

2.3. PCR amplification and high throughput DNA 

sequencing 

Isolated genomic DNA was amplified using con-

served degenerate primers targeting 16S rRNA gene 

V1-V2 and V4 regions as we described previously 

[13]. Two different regions were used in order to re-

duce biases in community composition estimates 

when only a single rRNA gene region is used. PCR 

amplification was performed as described [22]. Puri-

fied amplicons were sequenced on Ion Torrent Per-

sonal Genome Machine. We obtained an average of 

48,942 sequence reads per sample, which were then 

processed in QIIME [23] using default pipeline and 

parameters. Sequences were annotated against Ribo-

some Database Project database. Cell counts were 

calculated from read counts using our previously de-

scribed strategy that took into consideration the num-

ber of 16S rRNA genes per species genome [14]. The 

cell counts obtained independently for each sample 

based on the sequencing of V1-V2 and V4 16S rRNA 

gene regions were merged together into a single taxon 

abundance estimate via  

 

 

where A is an abundance value for each taxon. PIC-

RUSt was used to predict total functional capacity of 

each subject’s distal gut microbiome as we did previ-

ously [13]. Sequence dataset has been deposited into 

the Sequence Read Archive repository (BioProject ID 

PRJNA563912).  

 

2.4. Statistical analyses 

Principal coordinate analysis and redundancy analysis 

were performed in MATLAB and R on the genus-

level microbial abundance dataset as we described 

[24]. Phylogenetic UniFrac distance was used to cal-

culate sample (dis)similarity.  

  

3. RESULTS  

We profiled fecal microbiota of 26 adult subjects liv-

ing in low-income neighbourhoods and consuming a 

typical Western diet. A food hub was recently estab-

lished in these communities providing improved ac-

cess to higher quality fresh foods. A wealth of bio-

metric and dietary information was recorded for each 

subject (Table 1). Healthy Eating Index [7] was cal-

culated based on the dietary recall at the time of stool 

collection. While all subjects were free of gastrointes-

tinal symptoms (two subjects reported mild diarrhea 

at the time of stool collection) and have not consumed 

antibiotics or probiotics in the prior 4 months, many 

subjects could be classified as overweight (25 ≤ BMI 

< 30) or obese (BMI ≥ 30). Participants varied signif-

icantly in BMI, age, daily caloric intake, and con-

sumed macronutrient amounts (Table 1).  
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All fecal samples were subjected to 16S rRNA gene-

based high throughput sequencing. While we ob-

served significant subject-to-subject variability in 

microbiota composition, no consistent differences 

were found among HEI groups at either class or ge-

nus taxonomic levels (Figure 1A). All samples were 

dominated by classes Clostridia, Bacteroidia, and 

Actinobacteria.  

 

Interestingly, several subjects housed substantial 

numbers of Methanobacteria (member of Archaea). 

Unconstrained weighted UniFrac-distance based 

principal coordinates analysis did not separate sam-

ples according to HEI group (data not shown). Or-

thogonal projections to latent structures discriminant 

analysis of the genus abundance dataset which used 

HEI as classifying variable similarly failed to pro-

duce an acceptable model, indicating that there were 

no microbial genera that could separate the interro-

gated fecal microbiota according to subject’s HEI. 

Similarly, PICRUSt-generated predicted functions of 

gut microbial metagenomes did not separate samples 

according to HEI index (data not shown), and no cor-

relation was evident between macronutrient con-

sumption and abundances of the corresponding nutri-

ent degradation pathways (e.g., there was no associa-

tion between higher daily protein intake and higher 

prevalence of amino acid metabolism genes).  

 

To assess the contribution of our biometric and die-

tary variables to fecal microbiota composition, we 

carried a weighted UniFrac-distance based redundan-

cy analysis (RDA), where microbial genus abundance 

dataset was constrained by our explanatory variables 

[25]. Among all explanatory variables tested, age was 

a statistically significant contributor to the microbiota 

variation in the constrained RDA space (Figure 1B). 

Similarly, to the PCoA output, there was only a mi-

nor dispersion of samples according to HEI group 

along the constrained axis 2. Intriguingly, HEI and 

BMI indices displayed opposite effects on the ob-

served distribution of samples in the RDA space. 

There was no direct correlation between the subjects’ 

HEI and BMI values (Pearson correlation coefficient 

Rp=0.08), indicating that the revealed relationships 

were due to the effect of each explanatory variable on 

the fecal microbiota composition. Dietary variables 

did not contribute appreciably to the observed micro-

biota composition (see Figure 1B).  

 

Measured variable 
Low HEI group (N=7) Medium HEI group (N=11) High HEI group (N=8) 

mean ± SD range mean ± SD range mean ± SD range 

HEI 37.4±3.4 32-43 47.8±3.4 44-53 63.8±6.4 57-75 

Age, years 44.6±8.5 30-51 51.3±13.0 29-64 49.1±12.7 33-66 

BMI 26.8±3.8 22.6-34.4 27.4±8.1 17.9-44.1 28.3±4.3 22.7-34.7 

Daily calories, cal 2113±905 1055-4159 1784±775 897-3522 2318±1175 1175-4971 

Daily carbs, g 240±128 93-515 217±112 95-488 295±208 111-782 

Daily proteins, g 73±41 23-144 75±26 41-112 89±36 48-148 

Daily fats, g 97±40 55-184 69±31 23-130 90±35 48-152 

Daily fiber, g 12±6 7-25 14±7 6-26 25±17 9-63 

Table 1. Characteristics of subject cohorts  
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4. DISCUSSION   

Dietary patterns have been shown to influence the 

composition and functional capacity of human gut 

microbiota in multiple studies [14, 15]. In this work 

we sought to assess if diets of different nutritional 

quality (expressed by HEI) can be associated with 

differences in subject’s gut microbiota. We found no 

such consistent associations in our dataset, in part due 

to significant variability among subjects in age, BMI, 

and daily caloric intake (see Table 1). Constrained 

redundancy analysis indicated that age was the domi-

nant (and the only statistically significant) predictor 

of microbiota composition, consistent with previous 

reports of age-related shifts in gut microbial composi-

tion [26]. Other dietary and biometric variables did 

not contribute above 5% to the overall microbiota 

composition variability (see figure 1B). Interestingly, 

we observed an opposite effect of diet quality (HEI) 

and weight (BMI) on microbiota composition. It is 

tempting to speculate that adopting healthier dietary 

habits thus shifts gut microbiota towards a healthier 

state, as opposite to the detrimental effects that were 

reported in studies of obesity-related microbiota [27, 

28]. However, the cohort size in this study was small, 

and this finding needs to be further evaluated in a 

larger sample set.  
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