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ABSTRACT  

This QSAR study was conducted by using a series of 
Azetidinones which belong to Dapsone derivatives. It 
allowed to obtain two different models according to 
the molecular descriptors and the antibacterial activi-
ties (Bacillus subtilis and Pseudomonas aeruginosa). 
The molecular descriptors were obtained by applying 
the methods of quantum chemistry at the B3LYP/6-
31G (d) level. The different statistical indicators of the 
first model which are as a function of the Bacillus 
subtilis activity are the coefficient of determination R2 
= 0.945, the standard error of the regression S = 0.139, 
the Statistical significance of regression, Fisher F-test 
F = 94.315 and the cross-validation correlation coeffi-
cient  Q2cv=0.942. Those of the second model linked 
to the activity of Pseudomonas aeruginosa are the 
regression coefficient R2 = 0.933, the standard devia-
tion S=0.135, the Statistical significance of regression, 
Fisher F-test F = 46.582 and the cross-validation coef-
ficient  Q2cv= 0.928. So these models have good sta-
tistical performances. The quantum descriptors of 
electrophilic index (ω), electronic energy (ε0) and di-
pole moment (μ) are responsible of the antibacterial 

activity of the Azetidinones derived from Dapsone. 
Moreover, the index of electrophilic is the first des-
criptor in terms of priority for the prediction of the 
antibacterial activity of the studied compounds. The 
Eriksson et al. acceptance criteria used for the test set 
are verified. External validation sets also verified all 
the Tropsha et al. criteria. 

Keywords: Azetidinone, QSAR Model, Quantum 
Descriptors, DFT, Antibacterial activity 

1. INTRODUCTION 

Diamino-Diphenyl sulfone or DDS (Dapsone) is a 
biologically active sulfone (bacteriostatic) used in the 
treatment of leprosy. However, nowadays Dapsone 
presents many undesirable effects such as cutaneous, 
neurological and psychiatric infections. It shows re-
sistances during treatment too [1]. In such a context 
the continuation of the development of new more effi-
cient Dapsone derivatives is a real necessity. The 2-
azetidinone (β-lactam) ring system is the common 
structural feature of a certain number of β-lactam with 
broad antibiotic spectrum. It includes penicillins, ce-
phalosporins, carbapenems, nocardicins, monobac-
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tams, clavulanic acid, sulbactams and tazobactams, 
which have been widely used as chemotherapeutic 
agents to treat bacterial infections and microbial di-
seases [2-9]. In recent years, the synthesis of 2-
azetidinones and the study of their antibacterial pro-
perties have permitted to obtain compounds with va-
rious pharmacological activities such as antidiabetic 
activity [10], anti-inflammatory [11] and Anti-HIV 
activity [12]. In order to get new compounds with 
more interesting biological activities the condensation 
of the Dapsone with 2-azetidinone was therefore envi-
saged by some chemists [13-15]. The quantitative 
structure-activity Relationship (QSAR) study is the 
process by which a molecular structure is correlated 
with a well-determined effect such as biological acti-
vity or chemical reactivity. The development of these 
kind of relationships is in full expansion and become 
indispensable (useful) in pharmaceutical chemistry 
and drug design [16]. This study is used to limit the 

numerous experiments those are sometimes long and 
expensive. In fact it reduces the drug production cost 
too for pharmaceutical firms [17,18]. This QSAR ap-
proach originates from studies conducted on the one 
hand by Hansch [19] and on the other hand by Free 
and Wilson [20]. Indeed, Hansch has established mo-
dels that relate biological activity to the hydrophobic, 
electronic, and steric properties of molecules. General-
ly, the QSAR model is based on a fifth (1/5) of the 
initial database. 

The main objective of this work is to apply Quantita-
tive Structure-Activity Relationships (QSAR) model-
ing to develop reliable models to predict two antibac-
terial activities that are Bacillus subtilis and Pseudo-
monas aeruginosa, of a series of twenty (20) Azet-
idinones derivatives of Dapsone (Figure 1). These 
compounds have been synthesized and tested by Me-
hta and Pathak [13] for their biological activities.  

Figure 1: Molecular Structures of Azetidinones used for QSAR models  
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These molecules were synthesized by condensation of 
Schiff bases which derive from Dapsone with chloroa-
cetylchloride in the presence of triethylamine as a cat-
alyst in order to obtain azetidinones (1-20).  
 
2. MATERIALS AND METHODS 
2.1. Chemometric Methods 
The twenty (20) molecules used in this study have 
Minimal Inhibitory Concentration (MIC) ranging from 
1.0 to 54.0 μg/mL. The Minimum Inhibitory Concen-
tration (MIC) is the lowest concentration needed to 
have an antibacterial response. Biological data are ge-
nerally expressed as the opposite of the log 10 base of 
activity (-log10(C)) in order to obtain higher mathema-
tical values when the structures are biologically very 
efficient [21,22]. The antibacterial activity is expres-
sed by the antibacterial potential pMIC. The antibacte-
rial potential is calculated from equation (1) 

  
 
 
 
 

Where M is the molecular weight of the component 
expressed in g/mol and MIC, the minimum inhibitory 
concentration in μg/mL.  
 
2.2. Computational Methods 
Correlations between the biological activity values of 
the studied molecules and their molecular structures 
were obtained by quantum chemistry calculations us-
ing the software called Gaussian 09[23]. In QSAR 
studies, DFT methods are generally well-known for 
generating a variety of molecular properties [24-31]. 
These properties increase the predictability of QSAR 
models by reducing the time and the cost involved in 
the design of new drugs [32, 33]. The B3LYP/6-31G 
(d) theory level was used to determine the molecular 
descriptors. The modeling was done using the Multi-
linear regression method implemented in Excel [34] 
and XLSTAT [35] spreadsheets.  
 
2.3. Quantum Descriptors 
For the development of QSAR models, some theoreti-
cal descriptors related to the conceptual DFT have 
been determined in particular, the electrophilic index 
(ω), the electronic energy (ε0) and the dipole moment 
(μ)  These descriptors are all determined from the op-
timized structure of the molecules. The electrophilic 
index (ω) measures the energetic stability of a system 
when this one acquires an additional charge from its 
environment [36]. The electronic energy (ε0) repre-
sents the electronic contribution of all atoms in each 
molecule. The dipole Moment (μ) indicates the stabili-
ty of a molecule in water. Thus, a strong dipole mo-
ment will translate a low solubility in organic solvents 
and a high solubility in water [37, 38]. The electrophi-
lic index (ω) is calculated from the equations (2): 

 
Concerning all the studied descriptors, the analysis of 

the bivariate data, that is to say the calculation of the 

partial correlation coefficient between each of the 

pairs of the whole descriptors is (inferior) less than 

0.70 (aij <0.70) , Which means that these different 

descriptors are independent from each other’s [39,40]. 

 
2.4. Estimation of the Predictive Ability of a QSAR 
Model 
The quality of a model is determined by taking into 
account various statistical data including the squared 
regression correlation coefficient R2, the standard er-
ror of the regression S, the correlation coefficients of 
cross validation Q2cv and Fisher F-test. The statistical 
indicators R2, S and F are linked to the adjustment of 
the calculated and experimental values. They describe 
the predictive capacity in the model’s limits and allow 
to estimate the precision (accuracy) of the calculated 
values on the training set [41-43]. As for the cross-
validated squared correlation coefficient Q2cv, it pro-
vides information on the predictive power of the mod-
el. This predictive power is qualified to be "internal" 
because it has been calculated from the basic struc-
tures which are used to build this model. The determi-
nation’s coefficient R2 gives an evaluation of the dis-
persion of theoretical values around the experimental 
ones. The quality of the modeling is good when the 
different points are closer to the fitting line [44]. The 
adjustment of the points to this line can be evaluated 
by the coefficient of determination.  

 
 

Where  
yi,exp : Experimental value of antibacterial activity  
ŷi,theo : Theoretical value of the antibacterial activity  
ȳi,exp : The mean value of the experimental values of 
the antibacterial activity  
The closer the value of R² to 1, the more the theoreti-
cal and experimental values are correlated. 
Moreover, the variance σ2 is determined by the rela-
tion 4: 
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Where k is the number of independent variables 
(descriptors), n is the number of molecules in the test 
or learning set and n-k-1 is the degree of freedom. The 
standard deviation S is another used statistical indica-
tor. It evaluates the reliability and precision (accuracy) 
of a model:  
 
 
 
 
 
 
The Fischer test F is also used to measure the level of 
statistical significance of the model, ie the quality of 
the choice of the descriptors constituting the model.  
 
 
 
 

The coefficient of determination of the cross-validated 
squared correlation coefficient Q2cv, permits to evalu-
ate the accuracy of the prediction on the test set and it 
is calculated by using the following formula: 

The performance of a mathematical model is charac-
terized by a value of Q2cv which higher than 0.5 
(Q2cv>0.5) for satisfactory models and higher than 0.9 
(Q2cv>0.9) for excellent ones according to Eriksson et 
al. [45,46]. Taking into account their results, a given 
test set is a performant model when the following ac-
ceptance criterion R2 - (Q2cv>0.3) is respected. More-
over, the predictive power of a model can be obtained 
from the five criteria of Tropsha et al. [47-49]. If at 
least three of the five criteria are met, the model will 
be considered acceptable. The five criteria are as fol-
low:  

(1)  ,                       

(2)   

(3)             
 

(4)   and ,                 
 

(5)    and  
 
 

Where : 
R2 : Correlation coefficient for the molecules in the 
validation set. 
R0

2 : Correlation coefficient between predicted and 
experimental values for the validation set. 

: Correlation coefficient between experimental 
and predicted values for the validation set. 
k: Is the constant of the correlation line at the origin 
for the validation set (predicted values based on exper-
imental values). 
k’: Is the constant of the correlation line at the origin 
for the validation set (experimental values according 
to the predicted values) . 
 
3. RESULTS AND DISCUSSION 
3.1. Results 

The Table 1 includes the fourteen (14) molecules 
in the training set and the six (6) molecules in the 
validation set. Thereafter, the values of the partial 
correlation coefficients aij of the descriptors are 
also presented in Table 2. 
 
The partial correlation coefficients aij between the 
pairs of descriptor (µ, ω), (µ,ε0  ) and (ω,ε0  ) are less 
than 0.70 (aij < 0.70). These values demonstrate the 
independence of the descriptors used to develop the 
models. 

It must be noted that the negative or positive sign of 
the descriptor’s coefficient of the model reflects the 
proportionality’s effect between the evolution of the 
biological activity and the parameter of the regression 
equation. Thus, the negative sign indicates that when 
the value of the descriptor is high, the biological activ-
ity decreases whereas the positive sign translates the 
opposite effect. The table 3 presents the best QSAR 
models obtained for the various antibacterial activities 
of Bacillus subtilis and Pseudomonas aeruginosa as 
well as statistical indicators. It must be emphasized 
(underlined) that these models were established using 
the same descriptors of the training test and test set of 
Table 1. 

Model 1 
 (Bacillus subtilis)p MICi

exp(μg/mL): = 2.593 - 3.10-5* 
ε0 + 0.485*ω 

Model 2 
 (Pseudomonas aeruginosap MICi

exp(μg/mL):  = 1.065 
- 6.7.10-4* ε0 + 0.353*ω - 0.046*μp MICi

exp 
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Table 1: Molecular descriptors and antibacterial activities of the training and validation set 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Values of the partial correlation coefficients of the descriptors. 

 

 

 

 

 

 

Table 3: Statistical analysis report of antibacterial activities on bacterial cells that are Bacillus subtilis and Pseu-
domonas aeruginosa. 

code 
 (u.a.) 

ω (eV) 
 (D) 

Bacillus Subtilis Pseudomonas Aeruginosa 

MIC (μg/mL) 
pMIC 

MIC (μg/
mL) 

pMIC 

1 -2885.352 3.582 2.370 49 4.071 54 4.029 

2 -2963.989 3.515 2.822 47 4.110 50 4.083 

3 -3804.538 3.737 3.466 4 5.208 7 4.965 

4 -3804.541 3.811 1.991 9 4.998 13 4.810 

5 -3035.783 3.233 3.677 6.5 4.484 10 4.387 

6 -3804.541 3.829 2.158 20 4.354 25 4.280 

7 -3035.785 3.504 2.435 27 4.463 32 4.387 

8 -3294.328 6.129 5.923 21 5.426 25 5.125 

9 -3294.349 6.102 1.974 2.5 5.648 5 5.222 

10 -3294.348 6.003 3.533 1.5 5.824 4 5.347 

11 -8027.558 3.814 2.105 1 4.752 3 4.662 

12 -3114.398 3.438 2.601 13 4.313 16 4.260 

13 -3343.429 3.409 4.862 31 4.287 35 4.242 

14 -3572.459 3.434 4.564 36 4.267 40 4.226 

15 -3264.834 3.499 6.120 41 4.321 45 4.258 

16 -3153.290 3.143 3.891 32 4.199 37 4.159 

17 -13320.193 4.075 2.982 42 4.887 46 4.736 

18 -2880.897 3.649 8.062 12 4.542 17 4.424 

19 -3526.854 3.676 7.782 16 4.624 21 4.492 

20 -3804.540 3.803 4.177 14 4.856 19 4.697 

  
µ ω  

µ 1.000    

ω 0.045 1.000   

 

0.213 0.017 1.000 

Statistical indicators of Multilinear regression 
Model 1 
(Bacillus subtilis) 

Model 2 
(Pseudomonas aeruginosa) 

Number of Compounds N 14 14 

Squared regression correlation coefficient R2 0.945 0.933 

Standard error of the regression S 0.139 0.135 

Statistical significance of regression, Fisher F-test F 94.315 46.582 

Cross-validation correlation coefficient Q2cv 0.942 0.928 

R2 - Q2cv 0.003 0.005 

Range of Activity  1 - 45 3 - 54 

Level of Statistical Significance α > 95 % 
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The negative signs of the dipole moment and electronic energy coefficients indicate that antibacterial activities 
will be improved for low value of the dipole moment and the electronic energy. In contrast, the positive signs of 
the coefficient of the electrophilic index means that high values of this descriptor are needed to improve the anti-
bacterial activity. The significance of the models is translated by a high values of the correlation coefficient R2 

which are 0.945 and 0.933 for the model 1 and for model 2 respectively. Otherwise the cross-validation correla-
tion coefficient Q2cv for model 1 is 0.942 and 0.928 for model 2. These different models are all acceptable be-
cause all the different values of R2- Q2cv are less than 0.3. The external validation of models 1 and 2 was carried 
out respectively with the Azetidinones (1; 2; 3; 4; 5; 20) and (5; 6; 11; 17; 18; 19).  
 

Table 4: The Tropsha criteria checks for external validation sets are presented  

All Tropsha criteria are verified by the external validation sets of models 1 and 2. These models are therefore 
acceptable for the prediction of antibacterial activities (Bacillus subtilis and Pseudomonas aeruginosa) of the 
series of Azetidinones derived from Dapsone. The different regression lines between the experimental and theo-
retical antibacterial activities of the training set (blue dots) and the test set (red dots) for Bacillus subtilis (model 
1) and Pseudomonas aeruginosa (model 2) are illustrated respectively in Figures 2 and 3.  

Statistique Parameters Tropsha Criteria [47-49] Model 1 Model 2 

  
0.954 0.856 

  
0.952 0.832 

  
0.00 0.00 

 
 

0.00 0.00 

  
1 1 

 
 

0.00 0.00 

  
0.954 0.856 

Figure 2: regression line of Model 1  Figure 3: regression line of model 2  
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The low values of 0.139 and 0.135 as of the standard error respectively in Models 1 and 2 demonstrate 

a good similarity between the predicted and experimental values (Figure 4). These curves show similar 

evolutions of these values in both models of Azetidinones’ series derived from Dapsone, despite some 

recorded differences. 

Figure 4: Similarity curve of experimental and predicted values for models 1 and 2 

3.3. Analysis of the Contribution of Descriptors inside Models  

According to the fact that each of the two models are as a function of two or three descriptors. It appears neces-
sary to determine the contribution of each descriptors. The study of the relative contribution of the descriptors in 
the prediction of the antibacterial activity of the compounds was carried out for the bacteria Bacillus subtilis and 
Pseudomonas aeruginosa by using the software XLSTAT version 2014 [35]. The different contributions are pre-
sented in figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Contribution of the different descriptors of the two models  
 
The electrophilic index presents a large contribution compared to the other descriptors in the two models. Thus, 
the electrophilic index proves to be the priority descriptor in the prediction of the antibacterial activities 
(Bacillus subtilis and Pseudomonas aeruginosa) of the studied Azetidinones derivatives.  
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4. CONCLUSION 
The electrophilic index (ω), the dipole Moment 
(µ), and the electronic energy (ε0) allowed us to 
predict the behaviour of the studied azetidinones 
in the presence of Bacillus subtilis and Pseudo-
monas aeruginosa bacteria. This study revealed 
the existence of strong correlations between the 
calculated and experimental values of the anti-
bacterial potential. The QSAR obtained models 
allow us to predict the activity of the best ana-
logues called "lead". These proposed models re-
veal that the electrophilic index is the first most 
useful descriptor for improving antibacterial acti-
vity. In addition, the positive signs of the electro-
philic index coefficient indicate that antibacterial 
activities will be improved for a high value of the 
electrophilic index. This work constitutes a com-
pass for the design of new more active molecules 
against bacteria Bacillus subtilis and Pseudomo-
nas aeruginosa. The significance of these mo-
dels was verified by the mean of a test set which 
is composed of six molecules. The work pre-
sented here will therefore play an important role 
in understanding the relationship between the 
physicochemical parameters of the structure and 
the biological activity. The study of these QSAR 
models, could help us to select the appropriate 
substituent in order to design new compounds 
with improved biological activity. 
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