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ABSTRACT: 

This study aimed to test the hypotheses that lipid drop density (dL), lipocrite (Li) and mean diameter (Dm), 

volume (V) and mass (MAC) of adipocytes provide reliable values of the number of adipocytes in vivo (NA), 

and that fasting alters NA. Mean diameter (μm) and lipocrite were respectively measured by microscopy 

and by the ratio between relative volume occupied by isolated adipocytes in a fixed volume suspension 

obtained from fixed sampled mass of retroperitoneal fat pad (MAT) from rats maintained under normal 

feeding (NF) or submitted to food deprivation (FD) for 24 h or 72 h. V(mL)=(πDm3/6), MAC(g)=dLxV, and NA 

were calculated by (i) (Li/V).1012 and (ii) MAT/MAC. Li was higher in FD-24h and FD-72h than in NF, while Dm 

was lower in FD-72h than in NF and FD-24h. NA, calculated by (i) and (ii), was higher in FD-72h than in NF and 

FD-24h. Increased Li in FD-72h should be due to hyperplasia, assuming that it does not occur through 

increased Dm (hypertrophy), since FD-72h had lower Dm than NF. Data suggested that in vivo adipogenesis 

occurs in retroperitoneal fat pad after 72 h of fasting as a homeostatic response to lipolysis and an 

adjustment to provide increased energy storage when there is new food supply. 

 

KEY WORDS:  fasting, starvation, adipocyte, adipogenesis, lipid droplet 

 
INTRODUCTION 

Food deprivation for periods ranging from 24 to 72 h 

has been applied experimentally for more than two 

decades to evaluate changes in various 

neuroendocrine factors that interact in nutritional 

and energy balance. In this way, this kind of 

methodology has its efficiency proved by the results 

reported in several publications (1-14).  

 The metabolic response to total food 

deprivation can be divided into three stages (15, 

16). The first stage is a short period, in which occurs 

glycogenolysis (15, 16). The second stage is 

characterized by the preservation of protein 

content with the energy’s needs supplied 

predominantly by lipid oxidation and the lipolytic  

 

rate increasing 2.5-times after 3-4 days (15, 16). The 

last stage is characterized by increased blood levels 

of urea and corticosterone (15). Among the 

endocrine changes known to occur during food 

deprivation are decreased plasma levels of insulin 

and leptin, increased glucocorticoids (17), GH 

(stimulation of lipolysis) (17, 18) and ghrelin (19), and 

decreased thyrotropin (TSH), triiodothyronine (T3) 

and thyroxine (T4), with consequent reduction of 

lipolysis and proteolysis [20, 21].Among these 

factors, glucocorticoids are also potent inducers of 

in vitroadipogenesis(22). 

The differentiation process of mesenchymal 

stem cells in the stroma of adipose tissue into 
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preadipocytes occurs when these multipotent cells 

lose the ability to differentiate in other 

mesenchymal lineages and become committed to 

the adipocyte lineage (21). After adipocyte lineage 

commitment, the preadipocytes become mature 

adipocytes, accumulating lipid droplets and 

showing the ability to respond to hormones (21). The 

knowledge about the process of adipogenesis has 

increased significantly (23-27), but with data 

obtained from in vitrostudies. Meanwhile, in vivo 

adipogenesis has been hypothesized under several 

pathophysiological situations, but there is lack of 

demonstration due to absence of standardized, 

simple and efficient methodology to monitor this 

process (21). Results of experimental counting of 

adipocytes using Coulter Counter technology and 

submitted to a complex mathematical analysis, 

specifically developed for this purpose, allowed the 

development of a mathematical model of adipose 

tissue’s growth, providing the most recent and 

consistent evidence for the existence of in vivo 

adipogenesis (28). However, this is an excessively 

laborious and expensive approach for routine 

calculations and/or for comparative purposes. 

This study measured mean adipocyte 

diameter (Dm) in randomized adipocytes, as well as 

lipocrite (Li) of fixed volume suspension of isolated 

adipocytes obtained from fixed mass of 

retroperitoneal fat pad (MAT) from rats under 

normal feeding (NF) or food deprivation (FD) for 

72h, and thus calculating adipocyte volume (V) 

and adipocyte mass (MAC) in order to test the 

hypotheses that these calculations provide 

approximate reliable values of the number of 

adipocytes in vivo (NA), as well as that FD alters NA. 

 

MATERIALS AND METHODS 

Animals, treatments and biometry 

Male Wistar rats, 90 days old, 350-377 g, were 

housed in a polypropylene box (inside length × 

width × height, 56 cm × 35 cm × 19 cm), with 

commercially available food Nuvilab® CR-11, 

composed of 22% protein, 55% carbohydrate, 4% 

lipids, 9% fibers, 10% vitamins and minerals (total of 

3kcal/g) and tap water ad libitum, in a ventilated 

container (AlescoInd Com, Monte Mor, SP, Brazil), 

with a controlled temperature (24±2°C), relative 

humidity (65±1%), and 12:12-hour light/dark 

photoperiod (lights on at 6:00 AM). These animals 

were divided into three groups: NF, animals that 

continued with food ad libitum for 72 hours, and FD-

72h, animals submitted to food deprivation, which 

was performed by transferring pairs of animals, 

between 7:30-9:00 of the light period, into 

metabolic cages without food for 72 hours; and FD-

24h, animals submitted to food deprivation, which 

was performed by transferring pairs of animals, 

between 7:30-9:00 of the light period, into 

metabolic cages without food for 24 hours, to 

confirm the accuracy of the methods showed in this 

study. During this period drinking water was 

provided ad libitum for both groups.  

Body weight (BW) and nasoanal length 

(NAL) were measured and the Lee index (BW[g]0.33 / 

NAL[cm]) of each animal was calculated (11-13). 

The conducts and procedures involving 

animal experiments were approved by the 

Butantan Institute Committee for Ethics in Animal 

Experiments (License number CEUAIB 684/09) in 

compliance with the recommendations of the 

National Council for the Control of Animal 

Experimentation of Brazil (CONCEA). All efforts were 

made to minimize suffering.  
 

Adipocyte isolation 

After euthanasia by decapitation, retroperitoneal 

fat pad was removed through the manual 

dissection and washing with 0.9% NaCl solution. 

Total mass (g) of fat pad was measured and then 

MAT (3g) was separated and submitted to 

collagenase digestion (29, 30) as following: this fat 

pad mass was added to 9 mL DMEM (Cultilab, 

Brazil) containing 25 mM HEPES (pH 7.5), 4% bovine 

serum albumin (BSA) and 45 mg collagenase and 

incubated at 37°C, for 1 h, under gentle shaking. 

Subsequently, the incubate was washed with 8 

volumes of buffered washing solution (pH 7.4, at 

25°C) of 115 mMNaCl, 0.8 mM MgSO4•7H2O, 5.3 

mMKCl, 1.4 mM CaCl2•2 H2O, 0.89 mM 

NaH2PO4•H2O, 25 mM HEPES, 1 mM Na pyruvate, 

145 mM BSA. Then, the incubated was filtered 

through a nylon mesh and this filtrate was 

centrifuged at 200 rpm for 1 min, at 25°C. The pellet 

containing vascular stroma (capillary, endothelial 

cells, mast cells, macrophages and epithelial cells) 

was removed by suction and discarded, while the 

supernatant, containing the suspension of 

adipocytes, was washed and recentrifugated at 

the same conditions for 3 more times. The resultant 

suspension of isolated adipocytes was 

microscopically observed to verify the absence of 

vascular stroma. 
 

Li measurement 

The ultimate suspension of isolated adipocytes of 

each animal was homogenized individually by 

inversion and 0.05 mL was transferred to a 

microtube and then aspired to microhematocrit 

capillary tubes. After placed in a polystyrene tube 

of 15 mL these capillary tubes were centrifuged at 

400 X g for 2 min, at 25°C. The adipocytes formed a 

phase at the top of the capillary. The column height 

of this phase containing the adipocytes and of the 

phase containing the total volume of solution were 
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measured by a ruler and the ratio between them 

was calculated in this order, according to Di 

Girolamo et al. (31). 

 

Dm measurement 

The ultimate suspension of isolated adipocytes of 

each animal was homogenized individually by 

inversion and 0.01 mL was applied over a 

histological slide. A plastic reinforcement was 

placed at both ends of the slide before it was 

coverslipped with coverglass in order to prevent 

cells’ deformation. Under brightfield optical 

microscopy, the individual diameter of one hundred 

adipocytes randomly chosen was measured by the 

software Image-Pro ® Plus (Media Cybernetics) 

(Figure 1) in order to calculated Dm. 

 

Figure 1.  Illustration from computerized procedure for 
measuring the mean diameter of individual isolated 
adipocytes, using Image-Pro ® Plus software (Media 
Cybernetics). 

Estimation of adipocytes number  

Given that MAT = 3g and lipid droplet density (dL) = 

0.91g/mL (32, 33), thus V(mL)=(πDm3/6)and 

MAC(g)=dLxV were calculated and the results used 

to obtain NA by calculation of (i) (Li/V).1012 (number 

of isolated adipocyte per mL of MAT 

suspension)and (ii) MAT/MAC (number of isolated 

adipocyte in MAT). 

 

Statistical analysis and presentation of results 

Data were presented as mean ± S.E.M and 

statistically analyzed (FD-72h versus NF) by unpaired 

2-side Student’s t test (p<0.05) or ANOVA, followed 

by Multiple comparison Tukey test, when differences 

were detected, was used to compare the values 

among NF, FD-72h and FD-24h, using GraphPad 

Prism® software. 

Percentual from starting body mass of food 

deprived rats after 72 h was 94.9±0.45(BW: NF, 

377±2.8; FD-72h, 353±1.7), resulting in Lee index 

lower in FD-72h (0.282±0.0005) than in NF 

(0.292±0.002) with similar NAL between FD-72h 

(24.2±0.15) and NF (24.3±0.21) (Figure 2).No 

difference of total mass of periepididymal fat pad 

was show between NF and FD-72h (NF: 5.1±0.05; FD-

72h: 5.2±0.1), but the total mass retroperitoneal fat 

pad was lower in FD-72h (2±0.09) than in NF 

(4.1±0.09) (Figure 3). As shown in Figure 4 Dm was 

lower in FD-72h (77.7±2) and FD-24h (98.8±4) than in 

NF (107.1±0.74), Li was higher in FD-72h (0.20±0.020) 

and FD-24h (0.18±0.009) than in NF(0.06±0.004), and 

Li/V and MAT/MAC were higher in FD-72h (Li/V: 

7.48±0.52x106; MAT/MAC: 13.74±1.13x106) than in NF 

(Li/V: 0.95±0.05x106; MAT/MAC: 5.13±0.1x106) and 

FD-24h ((Li/V: 3.97±0.43x106; MAT/MAC: 

6.16±2.45x106). 

 
 
 
 
Figure 2. Comparison of body weight (BW), nasoanal length (NAL) and Lee index between rats maintained under normal feeding 
(NF) and food deprived for 72h (FD-72h). Mean values ± standard error of the means (S.E.M.) for n animals (over the bars), 
analyzed statistically using the GraphPadPrism

tm
 software package. *P<0.001, unpaired 2-side Student’s t test. 
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Figure 3. Comparison of retroperitoneal and periepididymal fat pad mass between rats maintained under normal feeding (NF) 
and food deprived for 72h (FD-72h). Mean values ± standard error of the means (S.E.M.) for n animals (over the bars), analyzed 
statistically using the GraphPadPrismtm software package. *P<0.001, unpaired 2-side Student’s t test. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.Lipocrite (Li), mean diameter of adipocytes (Dm) and number of adipocytes (NA) estimated by Li/V and by MAC in 
sampled 3 g of retroperitoneal fat pad (MAT) in rats maintained under normal feeding (NF), food deprived for 24h (Fd-24h) and 
food deprived for 72h (FD-72h). Mean values ± standard error of the means (S.E.M.) for n animals (over the bars), analyzed 
statistically using the GraphPadPrismtm software package. ANOVA, P<0.05; multiple comparison Tukey test, P<0.05, different 
letters (a,b,c) indicate significant differences among NF, FD-24h and FD-72h. 

 

DISCUSSION 

Two factors can explain whole body mass loss 

observed during 72-h starvation (5.1%): loss of 

muscle and/or adipose tissue. About 25% reduction 

in retroperitoneal fat pad mass shows the relevant 

contribution of this visceral adipose tissue depot to 

the loss of whole body mass. 

The differences related to adipocytes 

morphology in subcutaneous and visceral depots 

are well known (34). On the other hand, the 

regional distribution of subcutaneous and visceral 

depots is related to metabolic differences, and the 

visceral adipose tissue is the major influence on 

metabolic balance (35, 36). In turn, the regional 

distribution of visceral adipose tissue depots is also 

related to metabolic differences (37). Therefore, the 

interpretation of our presented results may not be  

 

applicable to other kind of visceral fat pad and/or 

other fat type. 

Decreased mass of retroperitoneal adipose 

tissue in food deprived for 72h should be attributed 

to decreased adipocyte size (diameter), due to 

increased lipolysis (16, 17,34) and/or to concomitant 

decreased number of adipocytes. In turn, increased 

lipocrite observed in food deprived for 72h should 

be due to increased cell diameter (hypertrophy) 

and/or to increased number of cells (hyperplasia). 

Assuming that increased lipocrite in food deprived 

for 72h was concomitant with decreased adipocyte 

diameter and decreased mass of retroperitoneal 

adipose tissue, then the adipocyte hyperplasia in 

this tissue induced by food deprivation for 72h can 

be clearly deduced. The adipocyte hyperplasia is 
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known to exert less significant contribution than the 

hypertrophy to increase the mass of adipose tissue 

(28). This fact could explain our finding of 

hyperplasia with concomitant reduction in 

retroperitoneal depot mass after food deprivation. 

Estimates the number of adipocytes by lipocrite or 

adipocyte mass calculations had the same order of 

magnitude. The differences observed can be easily  

explained, since the calculation using the 

adipocyte mass disregards the density of other 

intracellular components of the adipocyte besides 

the lipid, resulting in an overestimated mass. 

Furthermore, the existence of altered number of 

cells other than adipocytes in the retroperitoneal 

adipose tissue from food deprived is strongly 

suggested by this study. Values of Dmx(Li/V) for food 

deprived and controls should be similar if smaller 

mean diameter of adipocytes in the same mass of 

retroperitoneal fat pad would be concomitant with 

higher Li/V in food deprived than in controls. 

However, these values were 581.19 in food deprived 

and 101.74 in controls, suggesting a concomitant 

increase in the population of other cell types, in 

addition to adipocytes, in food deprived. The level 

of stress caused by starvation (38) could increase 

the number of immune cells in retroperitoneal 

adipose tissue, thus contributing to this difference 

between food deprived and controls. 

Given these results, the association between 

the lipocrite and the mean volume of adipocytes 

was shown to provide a reliable estimate of the 

number of adipocytes in cell suspension from a fixed 

sampled mass of fat pad. Regarding the 

methodology designed by Jo et al. (28), our 

methodology is less accurate, but it is relatively 

more simple and can be considered enough 

efficient to estimates for routine and comparative 

purposes.  

In the particular case of food deprivation, 

our methodology clearly demonstrated the 

occurrence of adipogenesis, which may be 

associated with several well-characterized 

hormonal stimuli (17, 23, 25-27). During starvation, 

glucocorticoids increases protein degradation, 

lipolysis and stimulates the gluconeogenesis, 

providing energy substrate required for homeostasis 

(17). Additionally, glucocorticoids are potent 

inducers of in vitroadipogenesis, since it activates 

the expression of two major initiators of 

adipogenesis, the PPAR gamma (peroxisome 

proliferator-activated receptor gamma) and family 

proteins C/EBP (CCAAT/enhancer-binding protein) 

(23, 25-27). Besides growth hormone (GH) also 

having an important role in energy supplying during 

food deprivation, stimulating lipolysis (17), its role in 

adipogenesis is still contradictory. In addition to 

biochemical factors, adipogenesis is also induced 

by biomechanical factors such as the rigidity of the 

extracellular matrix (39), and thus a lower stiffness 

could be hypothesized as a factor related to 

adipogenesis in food deprived animals.  

In conclusion, the existence of the 

association between 72 h fasting and in 

vivoadipogenesis was demonstrated for the first 

time in the rodent retroperitoneal fat pad, being 

suggestive of a homeostatic response to lipolysis, 

probably as an adjustment to provide increased 

energy storage when there is a new food supply. 
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