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ABSTRACT 
Glutathione (GSH) plays fundamental roles in complicated biological systems and serves 

many cellular functions. Herein, a sensitive fluorescent-colorimetric dual-mode sensing 

platform based on carbon dots and Au nanoparticles (AuNPs) was presented for the de-

tection of glutathione (GSH) in aqueous solution. In this system, the carbon dots (CDs) 

act as fluorometric reporter and the AuNPs serve a dual function as fluorescence quench-

er and colorimetric reporter, based on the electronic interaction. The mixture of positive 

charged CDs with the negative AuNPs resulted the fluorescence decreased, and color 

changed from red to blue. Due to the amplification effect between GSH and Au, the fluo-

rescence intensity of CDs recovered along with the GSH concentration ranging from 0.05 

to 500 μM with the detection limit of 10 nM. By monitoring the change of UV-vis spec-

troscopy intensity of AuNPs, the GSH could be detected with the range from 0.1 to 500 

μM and a limit of detection around 0.3μM. This method was successfully applied for 

GSH determination in swine feeds and chicken livers. Owing to its high sensitivity, ex-

cellent selectivity and convenient procedure, this strategy will provide a promising alter-

native for screening. 
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INTRODUCTION 

Glutathione (GSH) plays fundamental roles in com-

plicated biological systems and serves many cellular 

functions, which has been verified to support redox 

homeostasis of intracellular, signal transfer, xenobi-

otic metabolism and gene regulation[1-3]. It has been 

found that abnormal expression of GSH is closely 

associated with a variety of diseases, such as psoria-

sis, cancer, liver damage, leukocyte loss and other 

ailments. GSH, thus, have been function as a univer-

sal biomarker in diagnosis and therapy monitoring of 

cancers[4-7]. So far, efficient analytical methods for 

identification and quantification of GSH has been 

intensively investigated, including fluorescence, col-

orimetry, electrochemistry, surface-enhanced Raman 

scattering (SERS), and electrochemiluminescence[8-

12]. In fact, it also must be mentioned that it is still a 

challenge to develop a smart GSH probe to distin-

guish the GSH from Hcy and Lcy. Fortunately, sever-

al findings suggested the aggregation of AuNPs can 

be induced by biothiols with the order of HCys > Cys 

> GSH, for the reason that the effects of tremendous 

difference in coordination capability and steric hin-

drance between the GSH and the competitive biothi-

ols[13-15], then discriminate detection GSH with the 

AuNPs is expected, rationally. 

 

Recently, carbon dots (CDs), as the most promising 

fluorescent nano materials,thanks to its distinctive 

properties, such as low toxicity, good compatibility, 

excellent solubility, low cost, and high photostability, 

have attracted rapidly growing interest, and discovery 

of carbon quantunm dots is considered as a major 

milestone in the development of fluorescent nano-

materials. Compared with the conventional semicon-

ductor quantum dots (QDs), the interest in CDs re-

search reflects the potential that they display many of 

the electronic and optronics properties as the same of 

the QDs, for instance, quantum confinement effects, 

while enjoying the superiority of less toxicity of be-

ing heavy matels free contained in semiconductor 

materials as well stability[16-18] have attracted rapidly 

growing interest, and discovery of carbon quantunm 

dots (CDs) is considered as a major milestone in the 

development of fluorescent nanomaterials. Compared 

with the conventional semiconductor quantum dots 

(QDs), the interst in CDs research reflects the poten-

tial that they display many of the electronic and op-

tronics properties as the same of the QDs, for in-

stance, quantum confinement effects,while enjoying 

the superiority of less toxicity of being heavy matels 

free contained in semiconductor materials as well[19]. 

CDs exhibite broad UV absorption and commonly 

blue and green wavelengths emission and even to the 

red region[20-23], occasionally. Carbon dots sontributed 

significantly to the applications of biosensors, bioim-

aging, drug delivery, and catalysis[24-27]. There has 

been a sustained interest in the use of CDs for sensing 

application, nowadays, a series of sensitivity en-

hancement strategies are rapidly established and con-

stantly remodeled for fluorescence assays, approaches 

widely achieved including constructing sensors via 

fluorescence resonance energy transfer[28], electron 

transfer process[29], inner filter effect (IFE)[30], aggre-

gation[31], and so on. Strikingly the nanosensors based 

on aggregation does not require any link between the 

receptor and the fluorophore or surface modifications 

of fluorescence nanomaterial, by chemical bond or 

physical effect directly, which provides noticeable 

flexbility and much more simplicity.  

 

AuNPs, with the diameter of 1-100 nm, have become 

a widely applicable materials from fundamental stud-

ies to practical use in biological and chemical analy-

sis, stimulating a large range of interest in past dec-

ades in the application of photonics, sensing, catalyt-

ic, and nanomedicine, given to their rapid and simple 

chemical synthesis, easy control of the narrow size 

distribution and shape, outstanding bio-compatibility 

and bio-conjugation[32-35]. As we know, AuNPs in an 

aqueous solution show a unique color according to 

their morphology and size distribution, as the results 

of surface plasmon resonance of noble materials. 

Whereas discrete AuNPs in a solution are red in col-

or, assembled AuNPs are bluish purple in color, thus 

endowing AuNPs excellent properties for application, 

such as colorimetric or UV-spectrum. So far, various 

methods have been proposed to change the spectrum 

position according to adjust the local dielectric con-

stant and refractive index surrounding the particles, 

and aggregate the nanoparticles. Specifically, the later 

was demonstrated in a number of colorimetric sen-
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sors, since simple performce and magnificent sensi-

tivity and selectivity[36]. 

 

The development of dual-mode sensor will make it 

possible to achieve detection with simple operation, 

high selectivity, incomparable sensitivity, and unam-

biguous spatiotemporal resolution, which suggests 

their promising applications in chemical sensing, 

leading many efforts paid in investigation of dual-

mode sensors, in the past few years. The small mole-

cule fluorescent probes, combined with others analyt-

ical techniques such as colorimetric method[37], mass 

spectrometry[38], surface enhanced raman scattering 

(SERS)[39, 40], high performance liquid chromatog-

raphy[41], and electrochemical analysis have attracted 

tremendous attention. Fluorescence assays and colori-

metric strategies are the classical sensing techniques 

for optical sensors, which can transforme molecular 

events into the signal of fluorescence intensity or col-

or changes, easily, which have recently been emerged 

as the most talented candidates for the analytical 

methods for their operational simplicity, good sensi-

tivity and low cost, addressing the deficiencies of 

conventional sensors. 

 

In this work, an excellent sensitive dual-mode sensor 

for GSH detection with the performance of fluores-

cence and colorimetric was proposed, as shown in 

Scheme 1. Different from most of the dual-mode sen-

sor assays, in this work, CDs with modification-free 

and the contrary charged resulting in a new absorp-

tion peak at 644 nm appeared by enlarged gold nano-

particles, which inducing the AuNPs color changed 

from red to blue and the CDs fluorescence quenching. 

However, the specific multidentate anchor as well 

with the unique steric structure existing in GSH, 

which shows a strong affinity to AuNPs, and renders 

GSH to enclose AuNPs in priority, so that, GSH can 

prevent the AuNPs from being aggregated and keep 

away from the CDs, with the results of fluorescence 

recovered and the absorbance at 644 nm declined. 

The simultaneously fluorescent and colorimetric sig-

nal events for detections of GSH provide superiority 

of the ultra sensitivity of fluorescent intensity and the 

benefit of a visual assay and exposing the potential in 

bioanalysis and biosensor, which was significant in 

disease diagnosis in the future.  

Scheme 1. Schematic illustration of the dual-modes 

of CDs and AuNPs for GSH detection. 

 

MATERIALS AND METHODS 

Materials and apparatus 

P-phenylenediamine (p-PD), phosphoric acid, chloro-

auric acid (HAuCl4·4H2O), Trisodium citrate, 

Na2HPO4, NaH2PO4, glutathione (GSH). L-cysteine, 

homocysteine, methionine, threonine, tryptophan, 

arginine, alanine, serine, ( L-Cys, Hcy, Met, Thr, Try, 

Arg, Ala, Ser ), NaCl, KCl, CaCl2, NaH2PO4, 

Na2HPO4 were obtained from Sinopharm Chemical 

Reagent Co. (China), and all chemicals were used as 

obtained without further purification. Human serum is 

from volunteers of School Hospital in Jiangsu Uni-

versity (Zhenjiang, Jiangsu, 212013, PR China). Ultra

-pure water was prepared by a Millipore Milli-QTM 

system and employed throughout the following ex-

periments. 

 

The morphology of CDs, AuNPs were analyzed using 

a JEM-2100 transmission electron microscope 

(HRTEM, JEOL). The mean particle sizes and size 

distribution of the samples were analyzed using a 

Zeta PALS laser particle size analyzer (Brookhaven). 

X-ray diffraction (XRD) patterns were recorded by a 

D8 Advance diffractometer (Bruker). Infrared spectra 

were measured on a pressed KBr pellet employing a 

Nicolet 6700 FT-IR spectrometer (Nicolet). The flu-

orescence and the absorption spectra were measured 

with an RF-5301PC spectrofluorometer (Shimadzu) 

and a UV-2600 UV-Vis spectrophotometer 

(Shimadzu), respectively. 
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Synthesis of red carbon dots 

A hydrothermal methodwas used to prepare the CDs. 

Briefly, 0.1 g p-PD and 1 mL 85% phosphoric acid 

were dissolved in 40 ml H2O, next the mixture was 

transferred into a 100 mL Telfon equipped stainless 

steel autoclave and heated at 180°C for 24h[42]. After 

cooling down to room temperature, the dark red tur-

bid liquid was got. Then the solution were centri-

fuged at 13000 rpm for 10 min to remove the larger 

particles, and further dialyzed against deionized wa-

ter for 24 h to remove the excess reactants. Under 

vacuum condition, the prepared CDs were then dried 

for 48 h at room temperatur, and finally, the carbon 

dots solution was stored at 4°C for further use. 

 

Synthesis and Purification of AuNPs 

Gold nanoparticles AuNPs) were reduced, in the typi-

cal way, with citrate sodium a stabiling reagent. In 

brief, 0.5 ml of 0.1% HAuCl4 is droped into a proper 

amount of Ultra-pure water and heated to boiling, 

with stirring strongly at the same time. Then 2 ml of 

1% sodium citrate are droped nto the builing solution 

as quickly as possible, keeping the boiling for about 

30 min, and the gold nanoparticle with the color of 

red–purple are prepared. The solution were kept stir-

ring until cooling down to room temperature, and the 

as-prepared AuNPs were stored at 4 °C for further 

use.  

 

Preparation of pH buffer 

To explore the optimal pH for the procedure of detec-

tion, the solutions of 0.2 M Na2HPO4 and 0.2 M Na-

H2PO4 were prepared for the use of buffer. We ob-

tained the solution of different pH by the adjusting 

the ratio of two buffers, to correspond to the pH in 

real sample like human serum, we choose the range 

of pH from 3.90 to 8.03 to investigate. 

 

Quantification of GSH 

The ananlysis for GSH was performed in aqueous 

solution under room temperature, firstly. With a typi-

cal assay, standard stock solutions of GSH with vari-

ous concentrations were prepared by dissolving GSH, 

directly, in optimal pH buffer. Afterwards, AuNPs 

and a certain amount of standard stock solutions were 

mixed under gentle shaking. Then 10 times dilution 

by ultrapure water of as-prepared CDs added. The 

record of fluorescence emission spectra during the 

procedure was get with excitation wavelength set at 

520 nm.  

 

To evaluate the selectivity of the nanosensor, similar 

amino acids including L-Cys, Hcy, Met, Thr, Try, 

Arg, Ala, Ser, NaCl, KCl, CaCl2, NaH2PO4, 

Na2HPO4 was mixed with AuNPs in dissolving pH 

buffer firstly, and then CDs were shaked with the 

reaction solution gentlely. UV-vis and fluorescence 

spectra were recorded after CDs were mixed to the 

AuNPs reaction solution. 

 

The application of GSH detection in serum samples 

was carried out. Previously, the real samples were 

centrifuged with an ultrafilter of 3000 molecular 

weight cutoff at 7000 rpm for 15 min and diluted 100 

times by PBS. The concentration of the added GSH 

in serum samples was calculated using the developed 

sensing performce, and the recovery efficiency was 

carefully analyzed. In summary, all of the above sam-

ples are also measured by the UV-spectrum absorp-

tion spectrum while passing the fluorescence detec-

tion. 

 

RESULTS AND DISCUSSION 

Characterization 

The morphology and structure of the as-prepared 

AuNPs were showed in Fig 1. As displayed in Fig 

1A, the as-synthesized AuNPs were uniform in size 

and well monodispersed. As estimated from the typi-

cal low-magnification transmission electron micros-

copy (TEM) image, the diameters of AuNPs are ra-

ther small with a narrow size distribution (20±2 nm), 

as consistented with previous reports. 

 

As can be seen from Fig 1B, a nanoparticle count 

originated from many such images, gained from 

different fields of the sample, verified the pres-

ence of exquisitely monodispersed, with parti-

cles in mean diameter 4.4 nm, range from 3.8-

4.8 nm. 
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Figure 1. TEM images of (A) AuNPs; (B) CDs, inset: 

the HRTEM for CDs; (C) the mixture for CDs and 

AuNPs; (D) the AuNPs protected by GSH and then 

mixed with CDs. 

 

The optical absorption peak of the gold nanoparticles 

was investigated, owing to the strong local field en-

hancement from noble metal, the AuNPs with the av-

erage size of 20 nm shows a dramatic absorption at 

523 nm.While the AuNPs was mixed with CDs, an 

other absorption peak appeared at the wavelength of 

644 nm, shown in Fig 2. The absorption peak of the 

CDs was noted in the UV region with an obvious ab-

sorption at 290 nm, are matched to the π-π* transi-

tions of C=N and C=C bonds of the aromatic rings, 

respectively. What is more, in the visible region, a 

wide absorption band range in 360-600 nm can be 

attributed to the complex surface states of CDs. The 

standard signature of CDs owns a unique emission 

spectrum. From the principal as well as application 

perspective, fluorescence (FL) is one of the most en-

grossing behaviors of CDs. The emission peak at 602 

nm with independence of the excitation wavelengths, 

which ranged from 440 to 550 nm, and its superlative 

emission intensity is noticed when the excitation 

wavelength is fixed at 520 nm.  

 

 

 

Figure 2. (A)UV-vis spectrum of AuNPs and CDs; 

(B) fluoresence spectrum of CDs(a)excitation and (b) 

emission; (C) FI-TR spectrum of AuNPs and CDs; 

(D) XRD pattern of  AuNPs and CDs. 

 

To further confirm, Fig 2C represents the characteris-

tic FT-IR spectroscopy of peaks of AuNPs and CDs. 

First, the stabilized gold nanoparticles by sodium cit-

rate was confirmed by FT-IR spectroscopy. The peaks 

of the FT-IR representing  the oxygen-related groups, 

such as the C–O stretching peak showing at 1044 cm-

1, the stretching vibration peak of C=O groups at 1633 

cm-1, and the O–H vibration peaks at 3450 cm-1. Indi-

cating the as-prepared AuNPs were rich in carboxylic 

groups on the surface. The surface properties from the 

functional groups mean AuNPs owns a negatively 

charged, which matches to the Zeta potentials, the 

potentials of AuNPs are -1.96 mV. As for the carbon 

dots, the peak at 3432 cm-1 is due to stretching vibra-

tions of O-H or N-H , and the strong vibration of the 

C-O-C appears at 1128 cm-1.The peaks at 1628 cm-1 is 

caused by the stretching vibration of the C=C ben-

zenoid ring. In additian a broad band corresponding 

to oxygen functionalities like -OH and C-O at 1254-

1100 cm-1. The sharp peak resulting from the -NH3
+ 

shows at at 1505 cm-1, indicating the positive nano-

particle CDs are preferred to accept H+ ions in solu-

tions. Consistently, such CDs show a zeta potential of 

18.7 mV, different from those conventional negative-

ly charged CDs, remarkably. 
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To gain more insight, the diffraction peaks (of 

AuNPs) were intense and sharp, indicating the highly 

crystalline features. The diffraction pattern for the 

negatively charged AuNPs has three peaks at 38.2, 

44.4 and 64.6, corresponding to (111), (200) and 

(220), respectively (JCPDS No. 04-0783). The crys-

tal phase of CDs was further verified by X-ray dif-

fraction, as exhibited in Fig 2D. There was an obvi-

ous diffraction peak focus at about 25 which was 

consistent with the graphene structure of the CDs 

(JCPDS No. 01-0646). 

 

The sensor mechanism  

It is generally accepted that AuNPs is an excellent 

quench for fluorescence, containing organic fluores-

cent molecules, semiconductor quantum dots and 

carbon quantum dots, taking into account the fluores-

cence resonance energy transfer (FRET)[43-45]. There 

are relatively few studies devoted to fluorescence 

sensor with AuNPs by aggegation. In this script, it 

should be pointed out that the carbon quantum dots 

originated from the raw materials of P-

phenylenediamine owns positive charged, may com-

bine with AuNPs, given that electrostatic interaction 

happened between the two nano materials. This hy-

pothesis was confirmed with transmission electron 

microscope. Furthermore, most  surprisingly, the as-

semble morphology of CDs and AuNPs can be seen 

in Fig 1C .the AuNPs are aggregated compared to Fig 

1A.The results are in good consistent with the ob-

served aborsption, in Fig 3, a new peak at 644 nm 

appeared after mixed with CDs. On the basis of dis-

tinction in effect of coordination capability and steric 

hindrance as mentioned, the reaction of AuNPs with 

GSH can prevent the combination of gold nanoparti-

cles with CDs. The AuNPs was incubation with GSH 

for a while, and mixed with as-synthesised CDs se-

quentially. One unanticipated finding, greatly differ-

ent with the signal of mixture by CDs and AuNPs 

directly, was that the quenching of fluorescence by 

aggragation was prevented and the absorption at 

644nm weaken in Fig 3, as shown in Fig 4A simulta-

neously. In order to trace this dynamic development, 

transmission electron microscope was employed 

again, the distribution of nanomaterials was signifi-

cantly enhanced compared with Fig 1D. The results 

demonstrate the powerful evidence for detection of 

GSH in the solution of AuNPs and CDs by fluores-

cence and colormetics , sensitively and specifically.  

Figure 3. The changes of UV-Vis absorption of the 

mixture of CDs and AuNPs with and without GSH 

protection. 

 

Optimization of the experimental conditions 

For further development, the optimization should be 

studied systematically following relevant variables 

actors, such as dose of reactant, time and pH value 

and so on. The fluorescence intensity of CDs respond 

to the mounts of AuNPs has been discussed, since the 

amount of probe has a great impact on the detection 

sensitivity. The results show, with the mounts of 

AuNPs increased, the fluorescence decreased sharply 

until 98% roughly. 

 

Further effort is required to understand and better 

control the pH for solution dominating the sensors. 

Contrary to expectation, the unique characteristic for 

stability of this sensor in a wide range of pH offers 

exciting opportunities to practical application, com-

pared with traditional device. Variations in the fluo-

rescence of the sensor were investigated over the pH 

from 3.90 to 8.03. Upon analysis of the intensity, less 

than 20% of the intensity decrease, apparently. As 

expected, the buffer with pH at 6.51 was exploited, 

for the intensity of fluorescence is is higher than the 

others, 
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Besides, to get the best recovery of the fluorescence, 

the time of incubation for platform was examined. 

The results shows, the fluorescence began to recov-

ery once GSH added in the solution, and then kept 

stable, until the time exceed 2 hours. Therefore, the 

time for incubation was fixed at 2 hours in the further 

exploration. 

 

Molecular selectivity and sensing specificity of the 

sensor  

Owing to the good performance of the GSH selectivi-

ty detection system, the sensitivity, the linear re-

sponse range, and the detection limit of the CDs and 

AuNPs-based fluorescence and colormitric sensing 

system are quantitatied with the optimum experi-

mental conditions. As designed, firstly, the fluores-

cence turn-on can be the evidence for the release of 

CDs due to competitive binding of GSH with AuNPs 

As illustrated in Fig 4A, the fluorescence intensity 

showed different behaviors with various concentra-

tion of GSH. And the corresponding intensity in-

creased with GSH concentration from 0.05 to 500 

μM with a linear equation of F-F0 = 

6443.49+1997.36logc (r=0.9932).with the limited of 

0.01 μM obtained, exhibited in Fig 4B. If AuNPs 

were firstly incubated with GSH and then mixed with 

CDs solution, the fluorescence would increase with 

the increase of GSH concentration under the light 

with excite with λ=365 nm, as shown in Fig 4C.  

Figure 4. (A) Fluorescence spectra of the AuNPs and 

CDs system upon the exposure to different concen-

trations of GSH; (B) The link symbol of the system 

between F-F0 and different concentrations of GSH 

and The linearity of the system towards different con-

centrations of GSH; (C) The corresponding photo-

graphs under UV lamp (λex=365 nm). 

 

The state change for aggregation of AuNPs caused by 

GSH can be quantified by UV-vis spectroscopy as 

well. In addition to the SPR peak at 523 nm, there is 

another near to 644 nm, attributing to the characteris-

tic absorption peak from the aggregation state of 

AuNPs. The added of GSH resulted in the systematic 

decline of the absorbance at 644 nm, and the absorp-

tion at 533 nm raised contrarily, shown in Fig 5A, 

which is supported for the color of the suspension 

A644/A523=-0.03613logc+0.8823 (r=0.8488) ranged 

from 0.1 to 30 µM, and A644/A523=-

0.10776logc+0.9970 (r=0.9947) ranged from 30 to 

500 µM, in Fig 5B. There is a good ratio (A644/A523) 

correlation between the absorbance at 523 nm (A523) 

to 644 nm (A644) and the color change as the result of 

GSH with different concentrations, ranging from 0.8-

500 μM，via the following equation and a limit de-

tection of 0.3 μM was obtained. When AuNPs were 

firstly incubatd with GSH and then after mixed with 

a CDs solution, the solution would show the color 

from blue to purple, and finally to red, along with the 

increase of GSH concentration shown in Fig 5C.  

Figure 5. (A) UV-vis spectra of the AuNPs and CDs 

system upon the exposure to different concentrations 

of GSH; (B) The link symbol of the system between 

A644/523 and different concentrations of GSH and 
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The linearity of the system towards different concen-

trations of GSH; (C) The corresponding photographs 

under room light.  

 

The selectivity of this FL and UV-vis spectra sensing 

system was estimated. As shown in Fig 6, besides 

GSH, the effects of 13 several commonly existing 

interfering substances, including L-Cys, Hcy, Met, 

Thr, Try, Arg, Ala, Ser, NaCl, KCl, CaCl2, NaH2PO4, 

Na2HPO4 in the FL response of CDs and AuNPs were 

investigated. The results demonstrate these materials 

with 10µM have no obvious effect on the FL and col-

ormitric as compared to 10 µM GSH, which prevent-

ed the color of system changing from red to blue gray 

gradually with otherwise the same conditions and 

keeping FL still, indicating that this assay approach 

possessed a ultra specificity toward GSH. To explain 

the observed activity, we might consider the reaction 

fo AuNPs and CDs changed resulted from the tre-

mendous difference in coordination capability and 

steric hindrance effect.  

Figure 6. The selectivity of the dual modes sensor to 

various molecules: GSH (150 nM); other analytes (10 

μM). ( L-Cys, Hcy, Met, Thr, Try, Arg, Ala, Ser, 

NaCl, KCl, CaCl2, NaH2PO4, Na2HPO4), (A) the flu-

orescence and (B) UV-vis spectra. 

Determination of GSH in real samples 

In certain complex biological samples, for instance 

human plasma, the concentrations of some compo-

nent is abnormal, so it is necessary for potential prac-

tical assay, and the application of most common sen-

sors is a crucial issue. To test and verify the practical 

application of the probes, we collected human plasma 

samples, diluted 100-fold with PBS (pH 7.4) before 

the sensing process, from local hospital. The present 

approach provides a linear response to GSH in spiked 

samples. As summarized in Table 1, the containing of 

GSH detected by these sensors agreed with the chose 

spiked values greatly. The recoveries suggested that 

the existence of otherwise inorganic or organic com-

ponents showd no obvious affect of the detection for 

GSH in real samples. It reveal that the analytical per-

formance were feasible for the practical application. 

 

CONCLUSION 

In conclusion, a simple, low cost and convenient de-

tection method using CDs-AuNPs-based colorimetric 

and fluorescence probe that promises rapid, sensitive, 

selective detection of GSH has been developed. The 

results show the proposed sensor can detect GSH in 

concentration as low as 0.3 μM via UV-vis specture 

and 50 nM by fluorescence. The GSH can be distin-

guished with accurately, quickly and high selectivity 

from other existing interfering substances and the 

practical application for the sensors was performed 

with human serum samples, which supported the effi-

ciency of the proposed probe for the determination of 

GSH in complicated samples, suggesting the poten-

tial in application of bioanalysis and biodection, be-

ing used in disease ananlysis and diagnosis in the 

future.  

Table 1. Recoveries of GSH in spiked human serum samples (n = 3). 

Measure 
mode 

Found in sample
(μM) 

Added(μM) Total found Recovery RSD 

Fluorescence 0.27 

0.20 0.44 94.4% 2.15% 

0.40 0.67 100.4% 1.68% 

0.60 0.85 97.5% 2.58% 

Colormitric 0.46 

1.00 1.54 105.5% 5.63% 

2.00 2.45 99.6% 6.06% 

3.00 3.35 96.8% 4.75% 
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